Irredundant Decomposition of Algebras into One-Dimensional Factors
DOI:
https://doi.org/10.18778/0138-0680.45.3.4.06Keywords:
universal algebra, algebraic lattice, congruence lattice, uniform lattice, dimension of algebra, one-dimensional algebra, subdirect product, star-product, decomposition of algebraAbstract
We introduce a notion of dimension of an algebraic lattice and, treating such a lattice as the congruence lattice of an algebra, we introduce the dimension of an algebra, too. We define a star-product as a special kind of subdirect product. We obtain the star-decomposition of algebras into one-dimensional factors, which generalizes the known decomposition theorems e.g. for Abelian groups, linear spaces, Boolean algebras.
References
[1] G. Birkhoff, On the structure of abstract algebras, Proc. Cambridge Philos. Soc. 31 (1935), pp. 433–454.
Google Scholar
[2] G. Birkhoff, Lattice Theory. American Mathematical Society Colloquium Publications, vol. 25, American Mathematical Society, New York, (1948).
Google Scholar
[3] S. Burris, H. P. Sankappanavar, A Course in Universal Algebra, Springer-Verlag, 1981.
Google Scholar
[4] A.W. Goldie, The structure of prime rings under ascending chain conditions, Proc. London Math. Soc. (3) 8(1958), pp. 589-608.
Google Scholar
[5] G. Grätzer, General Lattice Theory. Second edition. Birkhauser Verlag, Basel (1998).
Google Scholar
[6] G. Grätzer, E. T. Schmidt, Characterizations of congruence lattices of abstract algebras, Acta Sci. Math. (Szeged) 24(1963), pp. 34-59.
Google Scholar
[7] P. Grzeszczuk, J. Okniński, E. R. Puczyłowski, Relations between some dimensions of modular lattices, Comm. Algebra 17(1989), pp. 1723–1737.
Google Scholar
[8] P. Grzeszczuk, E. R. Puczyłowski, On Goldie and dual Goldie dimensions, J. Pure Appl. Algebra 31(1984), pp. 47–54.
Google Scholar
[9] P. Grzeszczuk, E. R. Puczyłowski, On infnite Goldie dimension of modular lattices and modules, J. Pure Appl. Algebra 35(1985), pp. 151–155.
Google Scholar
[10] T. Katrinák, S. El-Assar, Algebras with Boolean and Stonean congruence lattices, Acta Math. Hungar. 48 (1986), pp. 301–31.
Google Scholar
[11] J. Krempa, On lattices, modules and groups with many uniform elements, Algebra Discrete Math. 1 (2004), pp. 75–86.
Google Scholar
[12] J. Krempa, B. Terlikowska-Osłowska, On uniform dimension of lattices, Contributions to General Algebra 9, Holder-Pichler-Tempsky, Wien, 1995, pp. 219–230.
Google Scholar
[13] R. N. McKenzie, G. F. McNulty, W. F. Taylor, Algebras, Lattices, Varieties, Vol. 1, The Wadsworth & Brooks/Cole Mathematics Series. Wadsworth & Brooks/Cole Advanced Books & Software, Monterey, California, (1987).
Google Scholar
[14] E. R. Puczyłowski, A linear property of Goldie dimension of modules and modular lattices, J. Pure Appl. Algebra 215 (2011), pp. 1596-1605.
Google Scholar
[15] S. Roman, Lattices and Ordered Sets, Springer-Verlag, New York, 2008.
Google Scholar
[16] A. Walendziak, On direct decompositions of lattices, bf Algebra Universalis, 37 (1997), pp. 185–190.
Google Scholar
[17] A. Walendziak, Decompositions in lattices and some representations of algebras, Dissertationes Mathematicae 392, (2001).
Google Scholar
[18] A. P. Zolotarev, On balanced lattices and Goldie dimension of balanced lattices, Siberian Math. J. 35:3 (1994), pp. 539-546.
Google Scholar
[19] A. P. Zolotarev, Direct decompositions of elements, and Goldie numbers in balanced lattices, Russian Math. (Iz. VUZ), 36:10 (1992), pp. 19-27.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2016 © Copyright by Authors, Łódź 2016; © Copyright for this edition by Uniwersytet Łódzki, Łódź 2016
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.