Sex estimation using measurements of the proximal femur in a historical population from Poland
DOI:
https://doi.org/10.18778/1898-6773.86.1.04Keywords:
sex assessment, morphometrics, sexual dimorphism, discriminant function, the Polish populationAbstract
Sex estimation is one of the most important components in assessing the biological profile of an individual. In an archaeological context, the pelvis, which is the most dimorphic part of the skeleton, is often poorly preserved, which can cause an inability to use morphological sex estimation methods. Therefore, alternative methods are required in such cases. Because the utility of the metric methods based on the femur measurement has been confirmed, and the bone is usually available for examination due to its good preservation, developing methods using the landmarks of the femur could have important implications in sex estimation.
This study aimed to derive a discriminant function equation for a Polish archaeological population based on measurements of the proximal end of the femur.
The study sample included individuals from a medieval cemetery in Milicz (n = 62) and an early modern necropolis at Czysty Square in Wrocław, Poland (n = 162). The analysis included seven measurements collected from the right and left proximal femora. To estimate the reproducibility of the measurements, intra-and interobserver errors and reliability coefficients were calculated. Subsequently, univariate and stepwise discriminant analyses were performed, and the sex sectioning points and equations were proposed.
No differences were observed between measurements of the right and left femora. The results indicated a high utility and reproducibility of the FHD measurement (regardless whether left or right femur was measured). The discriminant equations for sex estimation reached an accuracy of 83.0–92.3%, which implies the utility of the function on Polish historical populations when the other methods for sex estimation cannot be used.
Downloads
References
Albanese J. 2013. A method for estimating sex using the clavicle, humerus, radius, and ulna. J Forensic Sci 58(6):1414–1419. https://doi.org/10.1111/1556-4029.12188
View in Google Scholar
DOI: https://doi.org/10.1111/1556-4029.12188
Albanese J, Eklics G, Tuck A. 2008. A Metric Method for Sex Determination Using the Proximal Femur and Fragmentary Hipbone. J Forensic Sci 53(6):1283–1288. https://doi.org/10.1111/j.1556-4029.2008.00855.x
View in Google Scholar
DOI: https://doi.org/10.1111/j.1556-4029.2008.00855.x
Anastopoulou I, Eliopoulos C, Valakos ED, Manolis SK. 2014. Application of Purkait’s triangle method on a skeletal population from southern Europe. Forensic Sci Int 245:203.e1–203.e4. https://doi.org/10.1016/j.forsciint.2014.10.005
View in Google Scholar
DOI: https://doi.org/10.1016/j.forsciint.2014.10.005
Auerbach BM, Ruff CB. 2006. Limb bone bilateral asymmetry: variability and commonality among modern humans. J Hum Evol 50:203–218. https://doi.org/10.1016/j.jhevol.2005.09.004
View in Google Scholar
DOI: https://doi.org/10.1016/j.jhevol.2005.09.004
Bartholdy BP, Sandoval E, Hoogland ML, Schrader SA. 2020. Getting rid of dichotomous sex estimations: Why logistic regression should be preferred over discriminant function analysis. J. Forensic Sci 65(5):1685–1691. https://doi.org/10.1111/1556-4029.14482
View in Google Scholar
DOI: https://doi.org/10.1111/1556-4029.14482
Bidmos MA, Adebesin AA, Mazengenya P, Olateju OI, Adegboye O. 2021. Estimation of sex from metatarsals using discriminant function and logistic regression analyses. Aust J Forensic Sci 53(5):543–556.
View in Google Scholar
DOI: https://doi.org/10.1080/00450618.2019.1711180
Bidmos MA, Mazengenya P. 2021. Accuracies of discriminant function equations for sex estimation using long bones of upper extremities. Int J Legal Med 135(3):1095–1102.
View in Google Scholar
DOI: https://doi.org/10.1007/s00414-020-02458-y
Brickley M. 2004. Determination of sex from archaeological skeletal material and assessment of Partutition. In: Brickley M, McKinley JI, editors. Guidelines to the standards for recording human remains. IFA paper. UK: Southampton and Reading, 7:22–25.
View in Google Scholar
Brůžek J. 2002. A method for visual determination of sex, using the human hip bone. Am J Phys Anthropol 117(2):157–168.
View in Google Scholar
DOI: https://doi.org/10.1002/ajpa.10012
Buikstra JE, Ubelaker DH. 1994. Standards for data collection from human skeletal remains. Arkansas Archeological Survey: Fayetteville.
View in Google Scholar
Byers SN. 2016. Introduction to forensic anthropology. Routledge
View in Google Scholar
DOI: https://doi.org/10.4324/9781315642031
Case DT, Ross AH. 2007. Sex determination from hand and foot bone lengths. J. Forensic Sci 52(2):264–270. https://doi.org/10.1111/j.1556-4029.2006.00365.x
View in Google Scholar
DOI: https://doi.org/10.1111/j.1556-4029.2006.00365.x
Christensen MA, Passalacqua VN, Bartelink JE. 2015. Forensic anthropology current methods and practice. Elsevier.
View in Google Scholar
DOI: https://doi.org/10.1016/B978-0-12-418671-2.00005-7
Colman KL, Janssen MCL, Stull KE, Van Rijn RR, Oostra RJ, Boer HH, Van Der Merwe AE. 2018. Dutch population specific sex estimation formulae using the proximal femur. Forensic Sci Int 286:268.e1- 268.e8. https://doi.org/10.1016/j.forsciint.2017.12.029
View in Google Scholar
DOI: https://doi.org/10.1016/j.forsciint.2017.12.029
Dimichele DL, Spradley MK. 2012. Sex estimation in a modern American osteological sample using a discriminant function analysis from the calcaneus. Forensic Sci Int 221(1–3):152.e1-152.e5. https://doi.org/10.1016/j.forsciint.2012.03.026
View in Google Scholar
DOI: https://doi.org/10.1016/j.forsciint.2012.03.026
Djorojević M, Roldán C, Botella M, Alemán I. 2019. Sex assessment from the proximal femur in a Spanish population based on three-dimensional computed tomography metric analysis. Vojnosanit Pregl 76(12):1245–1252.
View in Google Scholar
DOI: https://doi.org/10.2298/VSP170920031D
Djorojević M, Roldán C, Botella M, Alemán I. 2015. Estimation of Purkait’s triangle method and alternative models for sex assessment from the proximal femur in the Spanish population. Int J Legal Med 130(1):245–251. https://doi.org/10.1007/s00414-015-1201-7
View in Google Scholar
DOI: https://doi.org/10.1007/s00414-015-1201-7
Inskip S, Scheib CL, Wohns AW, Ge X, Kivisild T, Robb J. 2019. Evaluating macroscopic sex estimation methods using genetically sexed archaeological material: The medieval skeletal collection from St John’s Divinity School, Cambridge. Am J Phys Anthropol 168(2):340–351. https://doi.org/10.1002/ajpa.23753
View in Google Scholar
DOI: https://doi.org/10.1002/ajpa.23753
İşcan MY. 2005. Forensic anthropology of sex and body size. Forensic Sci Int 147(2–3):107–112. https://doi.org/10.1016/j.forsciint.2004.09.069
View in Google Scholar
DOI: https://doi.org/10.1016/j.forsciint.2004.09.069
Jerković I, Bašić Ž, Kružić I, Anđelinović Š. 2016. Sex determination from femora in late antique sample from Eastern Adriatic coast (Salona necropolis). Anthropol Rev 79(1):59–67. https://doi.org/10.1515/anre-2016-0005
View in Google Scholar
DOI: https://doi.org/10.1515/anre-2016-0005
Kazzazi SM, Kranioti EF. 2018. Sex estimation using cervical dental measurements in an archaeological population from Iran. Archaeol Anthropol Sci 10(2):439–448. https://doi.org/10.1007/s12520-016-0363-7
View in Google Scholar
DOI: https://doi.org/10.1007/s12520-016-0363-7
Kiarszysz G, Kolenda J. 2017. Wczesnośredniowieczne Grodziska w Krajobrazie Doliny Baryczy. Przyczynek do Studiów nad Przemianami Osadniczymi. Śląskie Sprawozdania Archeologiczne 59:93–126. https://doi.org/10.23734/ssa.2017.59.93.126
View in Google Scholar
Kim D, Kwak D, Han S. 2013. Sex determination using discriminant analysis of the medial and lateral condyles of the femur in Koreans. Forensic Sci Int 233(1–3):121–125. https://doi.org/10.1016/j.forsciint.2013.08.028
View in Google Scholar
DOI: https://doi.org/10.1016/j.forsciint.2013.08.028
Klales AR, Ousley SD, Vollner JM. 2012. A Revised Method of Sexing the Human Innominate Using Phenice’ s Nonmetric Traits and Statistical Methods. Am J Phys Anthropol 149(1):104–14. https://doi.org/10.1002/ajpa.22102
View in Google Scholar
DOI: https://doi.org/10.1002/ajpa.22102
Krishan K, Chatterjee PM, Kanchan T, Kaur S, Baryah N, Singh RK. 2016. A review of sex estimation techniques during examination of skeletal remains in forensic anthropology casework. Forensic Sci Int 261,165-e1.
View in Google Scholar
DOI: https://doi.org/10.1016/j.forsciint.2016.02.007
Kubicka AM, Piontek J. 2016. Sex estimation from measurements of the first rib in a contemporary Polish population. Int J Legal Med 130(1):265–272. https://doi.org/10.1007/s00414-015-1247-6
View in Google Scholar
DOI: https://doi.org/10.1007/s00414-015-1247-6
Łubocka Z, Gronkiewicz S. 2015. Analiza zmian patologicznych i wybranych czynników stresów oraz izotopów stabilnych w materiale osteologicznym z wczesnonowożytnego cmentarza Salwatora we Wrocławiu Aneks. Wratislavia Antiqua 21:143–162.
View in Google Scholar
Macaluso PJ. 2010. The efficacy of sternal measurements for sex estimation in South African blacks. Forensic Sci Int 202(1–3):111. https://doi.org/10.1016/j.forsciint.2010.07.019
View in Google Scholar
DOI: https://doi.org/10.1016/j.forsciint.2010.07.019
Macaluso PJ, Rico A, Santos M, Lucena J. 2012. Osteometric sex discrimination from the sternal extremity of the fourth rib in a recent forensic sample from Southwestern Spain. Forensic Sci Int 223(1–3). https://doi.org/10.1016/j.forsciint.2012.09.007
View in Google Scholar
DOI: https://doi.org/10.1016/j.forsciint.2012.09.007
Mall G, Graw M, Gehring KD, Hubig M. 2000. Determination of sex from femora. Forensic Sci Int 113(1–3):315–321. https://doi.org/10.1016/S0379-0738(00)00240-1
View in Google Scholar
DOI: https://doi.org/10.1016/S0379-0738(00)00240-1
Phenice TW. 1969. A newly developed visual method of sexing the os pubis. Am J Phys Anthropol 30(2):297–301. https://doi.org/10.1002/ajpa.1330300214
View in Google Scholar
DOI: https://doi.org/10.1002/ajpa.1330300214
Plochocki JH. 2004. Bilateral Variation in limb articular surface dimensions. Am J Hum Biol 16:328–333. https://doi.org/10.1002/ajhb.20023
View in Google Scholar
DOI: https://doi.org/10.1002/ajhb.20023
Purkait R. 2005. Triangle identified at the proximal end of femur: a new sex determinant. Forensic Sci Int 147(2–3):135–139. https://doi.org/10.1016/j.forsciint.2004.08.005
View in Google Scholar
DOI: https://doi.org/10.1016/j.forsciint.2004.08.005
Ricklan DE, Tobias PV. 1986. Unusually low sexual dimorphism of endocranial capacity in a Zulu cranial series. Am J Phys Anthropol 71:285–293. https://doi.org/10.1002/ajpa.1330710304
View in Google Scholar
DOI: https://doi.org/10.1002/ajpa.1330710304
Sawicki J. 2015. Kultura materialna w świetle znalezisk z grobów na cmentarzu Salwatora we Wrocławiu. Wratislavia Antiqua 21:59–137.
View in Google Scholar
Šlaus M, Strinovic D, Skavic J, Petrovecki V. 2003. Discriminant function sexing of fragmentary and complete femora: standards for contemporary Croatia. J. Forensic Sci 48(3):509–512.
View in Google Scholar
DOI: https://doi.org/10.1520/JFS2002159
Tomaszewska IM, Frączek P, Gomulska M, Pliczko M, Śliwińska A, Sałapa K, Chrzan R, Kowalski P, Nowakowski M, Walocha JA. 2014. Sex determination based on the analysis of a contemporary Polish population’s palatine bones: a computed tomography study of 1,200 patients. Folia morphol 73(4):462–468. https://doi.org/10.5603/FM.2014.0069
View in Google Scholar
DOI: https://doi.org/10.5603/FM.2014.0069
Tomczyk J, Nieczuja-Dwojacka J, Zalewska M, Niemiro W, Olczyk W. 2017. Sex estimation of upper long bones by selected measurements in a Radom (Poland) population from the 18th and 19th centuries AD. Anthropol Rev 80(3):287–300. https://doi.org/10.1515/anre-2017-0019
View in Google Scholar
DOI: https://doi.org/10.1515/anre-2017-0019
Torimitsu S, Makino Y, Saitoh H, Sakuma A, Ishii N, Yajima D, Inokuchi G, Motomura A, Chiba F, Yamaguchi R, Hashimoto M, Hoshioka Y, Iwase H. 2016. Sex estimation based on scapula analysis in a Japanese population using multidetector computed tomography. Forensic Sci Int 262(285):285.e1–285.e5. https://doi.org/10.1016/j.forsciint.2016.02.023
View in Google Scholar
DOI: https://doi.org/10.1016/j.forsciint.2016.02.023
Ubelaker DH, DeGaglia CM. 2017. Population variation in skeletal sexual dimorphism. Forensic Sci Int 278:407. e1–407.e7. https://doi.org/10.1016/j.forsciint.2017.06.012
View in Google Scholar
DOI: https://doi.org/10.1016/j.forsciint.2017.06.012
Ulijaszek SJ, Kerr DA. 1999. Anthropometric measurement error and the assessment of nutritional status. Br J Nutr 82(3):165–177. https://doi.org/10.1017/s0007114599001348
View in Google Scholar
DOI: https://doi.org/10.1017/S0007114599001348
Wachowski K. 1969. Wczesnośredniowieczne cmentarzysko szkieletowe w Miliczu. Silesia Antiqua 11:199–223.
View in Google Scholar
Wachowski K. 1970. Wczesnośredniowieczne cmentarzysko szkieletowe w Miliczu cz. II. Silesia Antiqua 12:123–195.
View in Google Scholar
Walker PL. 2005. Greater sciatic notch morphology: sex, age, and population differences. Am J Phys Anthropol 127(4):385–391.
View in Google Scholar
DOI: https://doi.org/10.1002/ajpa.10422
Wojtucki D. 2015. Cmentarz i kościół Salwatora we Wrocławiu w świetle źródeł pisanych. Wratislavia Antiqua 21:11–18.
View in Google Scholar
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.