Molecular anthropology: Touching the past through ancient DNA retrieval. Methodological aspects
DOI:
https://doi.org/10.18778/1898-6773.64.03Keywords:
molecular biology, PCR, restriction analysis, sequencing, aDNA, mtDNA, NeandertalsAbstract
The revolution which introduced new techniques of molecular biology applied to DNA analysis enormously accelerated the progress in most areas of medicine and biology. Techniques such as polymerase chain reaction (PCR), restriction analysis and sequencing are widely used for diagnosis of a number of diseases, for genetic screening, phylogenetic analysis and population studies. Moreover, it became possible to study genetic relationships of extinct to contemporary organisms and even to follow evolutionary events. Variation in DNA sequences, especially that of humans, is fascinating not only for our own sake, but also because of the inferences that can be drawn from it about our recent evolution, demography and movements. Selected problems arising during ancient DNA (aDNA) isolation and analysis are discussed. Environment and time related factors altering the structure of nucleic acids as well as contamination of isolated material are among methodological problems that arise during the procedure of isolation and processing of aDNA. Resolving them is of great importance for the authentication of the identified sequences. Most common informative targets of aDNA are presented and among them mtDNA, and the sequences localized within nuclear DNA. The first, as well as the most important findings in the field are mentioned.
Downloads
References
AHERN T., A.M. KLIBANOV, 1985, The mechanism of irreversible enzyme inactivation at 100C, Science, 228, 1280-84
View in Google Scholar
DOI: https://doi.org/10.1126/science.4001942
AUSTIN J.J., A.J. ROSS, A.B. SMITH, R.A. FORTEY, R.H. THOMAS, 1997a, Problems with reproducibility – does geologically ancient DNA survive in amber-preserved insects? Proc. R. Soc. Lond. B., 264, 467-474
View in Google Scholar
DOI: https://doi.org/10.1098/rspb.1997.0067
AUSTIN J.J., A.B. SMITH, R.H. THOMAS, 1997b, Paleontology in a molecular world: The search for the authentic ancient DNA, Trends Ecol. Evol., 12, 303-306
View in Google Scholar
DOI: https://doi.org/10.1016/S0169-5347(97)01102-6
BERTRANPETIT J., 2000, Genome, diversity and origins: The Y chromosome as a storyteller, Proc. Natl. Acad. Sci. USA, 97, 6927-29
View in Google Scholar
DOI: https://doi.org/10.1073/pnas.97.13.6927
BREIMER L.H., T. LINDAHL, 1985, Thymine lesions produced by ionizing radiation in double-stranded DNA, Biochemistry, 24, 4018-22
View in Google Scholar
DOI: https://doi.org/10.1021/bi00336a032
BRINKMANN B., A. SAJANTILA, H.W. GOEDDE, H. MATSUMOTO, K. NISHI, P. WIEGAND, 1996, Population genetic comparisons among eight populations using allele frequency and sequence data from three microsatellite loci, Eur. J. Hum. Genet., 4, 175-182
View in Google Scholar
DOI: https://doi.org/10.1159/000472192
BROWN T.A., 1999, Genomes, BIOS Scientific Publ., Oxford
View in Google Scholar
BROWN T.A., 2001, Genomy, (Polish edition), Wyd. Naukowe PWN, Warszawa
View in Google Scholar
BROWN T.A., D. NELSON, J.S. VOGEL, J.R. SOUTHON, 1988, Improved collagen extraction by modified Longin method, Radiocarbon, 30, 171-177
View in Google Scholar
DOI: https://doi.org/10.1017/S0033822200044118
BROWN W.M., M. GEORGE JR., A.C. WILSON, 1979, Rapid evolution of animal mitochondrial DNA, Proc. Natl. Acad. Sci. USA, 76, 1967-71
View in Google Scholar
DOI: https://doi.org/10.1073/pnas.76.4.1967
CANN R.L., M. STONEKING, A.C. WILSON, 1987, Mitochondrial DNA and human evolution, Nature, 325, 31-36
View in Google Scholar
DOI: https://doi.org/10.1038/325031a0
COOPER A., 1994, DNA from museum specimens, [in:] Ancient DNA, B. Herrmann & S. Hummel (eds.), Springer Verlag, New York, pp. 149-165
View in Google Scholar
DOI: https://doi.org/10.1007/978-1-4612-4318-2_10
DE KNIJFF P., 2000, Messages through bottlenecks: on the combined use of slow and fast evolving polymorphic markers on human Y chromosome, Am. J. Hum. Genet., 67, 1055-61
View in Google Scholar
DOI: https://doi.org/10.1016/S0002-9297(07)62935-8
DENIRO M.J., 1985, Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction, Nature, 317, 806-809
View in Google Scholar
DOI: https://doi.org/10.1038/317806a0
DIZDAROGLU M., 1991, Chemical determination of free radical-induced damage to DNA, Free Radical Biol. Med., 10, 225-242
View in Google Scholar
DOI: https://doi.org/10.1016/0891-5849(91)90080-M
DIZDAROGLU M., 1992, Oxidative damage to DNA in mammalian chromatin, Mutat. Res., 275, 331-342
View in Google Scholar
DOI: https://doi.org/10.1016/0921-8734(92)90036-O
DORAN G.H., D.N. DICKEL, W.A. BALLINGER JR., F.O. AGEE, P.J. LAIPIS, W.W. HAUSWIRTH, 1986, 8000 year old human brain tissue: Anatomical, cellular and molecular analysis, Nature, 323, 803-806
View in Google Scholar
DOI: https://doi.org/10.1038/323803a0
DORIT R.L., H. AKASHI, W. GILBERT, 1995, Absence of polymorphism at the ZFY locus on the human Y chromosome, Science, 268, 1183-85
View in Google Scholar
DOI: https://doi.org/10.1126/science.7761836
FOSTER E.A., M.A. JOBLING, P.G. TAYLOR, P. DONNELLY, et al., 1998, Jefferson fathered slaves last child, Nature, 396, 27-28
View in Google Scholar
DOI: https://doi.org/10.1038/23835
FREDERICO L.A., T.A. KUNKEL, B.R. SHAW, 1990, A sensitive genetic assay for the detection of cytosine deamination: Determination of rate constants and the activation energy, Biochemistry 29, 2532-37
View in Google Scholar
DOI: https://doi.org/10.1021/bi00462a015
GILES R.E., H. BLANC, H.M. CANN, D.C. WALLACE, 1980, Maternal inheritance of human mitochondrial DNA, Proc. Natl. Acad. Sci. USA, 77, 6715-19
View in Google Scholar
DOI: https://doi.org/10.1073/pnas.77.11.6715
GREENWOOD A.D., C. CAPELLI, G. POSSNERT, S. PÄÄBO, 1999, Nuclear DNA sequences from late Pleistocene megafauna, Mol. Biol. Evol., 16, 1466-73
View in Google Scholar
DOI: https://doi.org/10.1093/oxfordjournals.molbev.a026058
HAGELBERG E., B. SYKES, R. HEDGES, 1989, Ancient bone DNA amplified, Nature, 342, 485
View in Google Scholar
DOI: https://doi.org/10.1038/342485a0
HAMADA H., M.G. PETRINO, T. KAKUNAGA, 1982, A novel repeated element with Z-DNA forming potential is widely found inevolutionary diverse eukaryotic genomes, Proc. Natl. Acad. Sci. USA, 79, 6465-69
View in Google Scholar
DOI: https://doi.org/10.1073/pnas.79.21.6465
HAMMER M.F., T. KARAFET, A. RASANAYAGAM, E.T. WOOD, et al., 1998, Out of Africa and back again: Nested cladistic analysis of human Y chromosome variation, Mol. Biol. Evol., 15, 427-441
View in Google Scholar
DOI: https://doi.org/10.1093/oxfordjournals.molbev.a025939
HAMMER M.F., A.J. REDD, E.T. WOOD, M.R. BONNER, et al., 2000, Jewish and Middle Eastern non-Jewish populations share a common pool of Y-chromosome biallelic haplotypes, Proc. Natl. Acad. Sci. USA, 97, 6769-74
View in Google Scholar
DOI: https://doi.org/10.1073/pnas.100115997
HANDT O., M. HÓSS, M. KRINGS, S. PÄÄBO, 1994, Ancient DNA: Methodological challenges, Experientia, 50, 524-529
View in Google Scholar
DOI: https://doi.org/10.1007/BF01921720
HANDT O., M. KRINGS, R.H. WARD, S. PÄÄBO, 1996, The retrieval of ancient human DNA sequences, Am. J. Hum. Genet., 59, 368-376
View in Google Scholar
HERRMANN B., S. HUMMEL, 1993, Recovery and analysis of genetic material from paleontological, archeological museum, and forensic specimens, [in:] Ancient DNA, B. Herrmann & S. Hummel (eds.), Springer Verlag, New York, pp. 1-12
View in Google Scholar
HERRMANN B., S. HUMMEL, 1997, Genetic analysis of past populations by DNA studies, [in:] Advances in research on DNA polymorphisms, ISFH Hakone Symposium Program Committee (eds.), Toyoshoten, Tokyo, pp. 33-47
View in Google Scholar
HIGUCHI R., B. BOWMAN, M. FREIBERGER, O.A. RYDER, A.C. WILSON, 1984, DNA sequences from a quagga an extinct member of the horse family, Nature, 312, 282-284
View in Google Scholar
DOI: https://doi.org/10.1038/312282a0
HOFREITER M., H. N. POINAR, W.G. SPAULDING, K. BAUER, P.S. MARTIN, G. POSSNERT, S. PÄÄBO, 2000, A molecular analysis of ground sloth diet through the last glaciation, Mol. Ecol., 9, 1975-84
View in Google Scholar
DOI: https://doi.org/10.1046/j.1365-294X.2000.01106.x
HORAI S., K. HAYASAKA, K. MURAYAMA, N. WATE, H. KOIKE, N. NAKAI, 1989, DNA amplification from ancient human skeletal remains and their sequence analysis, Proc. Jap. Acad., 65, 229-233
View in Google Scholar
DOI: https://doi.org/10.2183/pjab.65.229
HÓSS M., P. JARUGA, T.H. ZASTAWNY, M. DIZDAROGLU, S. PÄÄBO, 1996, DNA damage and DNA sequence retrieval from ancient tissue, Nucleic Acid Res., 24, 1304-07
View in Google Scholar
DOI: https://doi.org/10.1093/nar/24.7.1304
INGMAN M., H. KAESSMANN, S. PÄÄBO, U. GYLLENSTEN, 2000, Mitochondrial genome variation and the origin of modern humans, Nature, 408, 708-713
View in Google Scholar
DOI: https://doi.org/10.1038/35047064
JOBLING M.A., C. TYLER-SMITH, 1995, Fathers and sons: The Y-chromosome and human evolution, Trends Genet., 11, 449-456
View in Google Scholar
DOI: https://doi.org/10.1016/S0168-9525(00)89144-1
KASAI H., S. NISHIMURA, 1984, Hydroxylation of deoxyguanosine at the C-8 position by ascorbic acid and other reducing agents, Nucleic Acid Res., 12, 2137-45
View in Google Scholar
DOI: https://doi.org/10.1093/nar/12.4.2137
KOLMAN C.J., N. TUROSS, 2000, Ancient DNA analysis of human populations, Am. J. Phys. Anthropol., 111, 5-23
View in Google Scholar
DOI: https://doi.org/10.1002/(SICI)1096-8644(200001)111:1<5::AID-AJPA2>3.0.CO;2-3
KRINGS M., C. CAPELLI, F. TSCHENTSCHER, H. GEISERT, et al., 2000, A view of Neandertal genetic diversity, Nature Genet., 26, 144-146
View in Google Scholar
DOI: https://doi.org/10.1038/79855
KRINGS M., H. GEISERT, R.W. SCHMITZ, H. KRAINITZKI, S. PÄÄBO, 1999, DNA sequence of the mitochondrial hypervariable region II from the Neandertal type specimen, Proc. Natl. Acad. Sci. USA, 96, 5581-85
View in Google Scholar
DOI: https://doi.org/10.1073/pnas.96.10.5581
KRINGS M., A. STONE, R.W. SCHMITZ, H. KRAINITZKI, M. STONEKING, S. PÄÄBO, 1997, Neandertal DNA sequences and the origin of modern humans, Cell, 90, 19-30
View in Google Scholar
DOI: https://doi.org/10.1016/S0092-8674(00)80310-4
LAWLOR D.A., C.D. DICKEL, W.W. HAUSWIRTH, P. PARHAM, 1991, Ancient HLA genes from 7,500-year old archaeological remains, Nature, 349, 785-788
View in Google Scholar
DOI: https://doi.org/10.1038/349785a0
LINDAHL T., 1993, Instability and decay of the primary structure of DNA, Nature, 362, 709-715
View in Google Scholar
DOI: https://doi.org/10.1038/362709a0
LOEB L.A., 1994, Microsatellite instability: Marker of a mutator phenotype in cancer, Cancer Res., 54, 5059-63
View in Google Scholar
MADDISON D.R., M. RUVOLO, D.L. SWOFFORD, 1992, Geographic origins of human mitochondrial DNA: Phylogenetic evidence from control region sequences, Syst. Biol., 41, 111-124
View in Google Scholar
DOI: https://doi.org/10.1093/sysbio/41.1.111
MIESFELD R., M. KRISTAL, N. ARNHEIM, 1981, A member of a new repeated sequence family which is conserved throughout eucaryotic evolution is founded between the human delta globin genes, Nucleic Acid Res., 9, 5931-47
View in Google Scholar
DOI: https://doi.org/10.1093/nar/9.22.5931
MULLIS K.B., F.A. FALOONA, 1987, Specific synthesis of DNA in vitro via a polymerasecatalyzed chain reaction, Methods Enzymol., 155, 335-350
View in Google Scholar
DOI: https://doi.org/10.1016/0076-6879(87)55023-6
NORDBORG M., 1998, On the probability of Neanderthal ancestry, Am. J. Hum. Genet., 63, 1237-40
View in Google Scholar
DOI: https://doi.org/10.1086/302052
OLIVO P.D., M.J. VAN DE WALLE, P.J. LAIPIS, W.W. HOUSEWIRTH, 1983, Nucleotide sequence evidence for rapid genotypic shifts in the bovine mitochondrial DNA D-loop, Nature, 306, 400-402
View in Google Scholar
DOI: https://doi.org/10.1038/306400a0
OVCHINNIKOV I.V., A. GÓTHERSTRÓM, G.P. ROMANOWA, V.M. KHARITONOV, K. LIDEN, W. GOODWIN, 2000, Molecular analysis of Neanderthal DNA from the northern Caucasus, Nature, 404, 490-493
View in Google Scholar
DOI: https://doi.org/10.1038/35006625
PÄÄBO S., 1985a, Preservation of DNA in ancient Egyptian mummies, J. Arch. Sci., 12, 411-417
View in Google Scholar
DOI: https://doi.org/10.1016/0305-4403(85)90002-0
PÄÄBO S., 1985b, Molecular cloning of ancient Egyptian mummy DNA, Nature, 314, 644-645
View in Google Scholar
DOI: https://doi.org/10.1038/314644a0
PÄÄBO S., 1986, Molecular genetic investigations of ancient human remains, Cold Spring Harbour Symp. Quant. Biol., 51, 441-446
View in Google Scholar
DOI: https://doi.org/10.1101/SQB.1986.051.01.053
PÄÄBO S., 1989, Ancient DNA: Extraction, characterization, molecular cloning, and enzymatic amplification, Proc. Natl. Acad. Sci. USA, 86, 1939-1943
View in Google Scholar
DOI: https://doi.org/10.1073/pnas.86.6.1939
PÄÄBO S., 1995, The Y chromosome and the origin of all of us, Science, 268, 1141-42
View in Google Scholar
DOI: https://doi.org/10.1126/science.7761828
POINAR H.N., M. HÓSS, J.L. BADA, S. PÄÄBO, 1996, Amino acid racemization and the preservation of ancient DNA, Science, 272, 864-866
View in Google Scholar
DOI: https://doi.org/10.1126/science.272.5263.864
SHEN P., F. WANG, P.A. UNDERHILL, C. FRANCO, et al., 2000, Population genetic implications from sequence variation in four Y chromosomal genes, Proc. Natl. Acad. Sci. USA, 97, 7354-59
View in Google Scholar
DOI: https://doi.org/10.1073/pnas.97.13.7354
SIDOW A., A.C. WILSON, S. PÄÄBO, 1991, Bacterial DNA in Clarkia fossils, Philos. Trans. R. Soc. Lond. B., 333, 429-433
View in Google Scholar
DOI: https://doi.org/10.1098/rstb.1991.0093
STANKIEWICZ B., H. POINAR, D. BRIGGS, R. EVERSHED, G. POINAR, 1998, Chemical presentation of plants and insects in natural resins, Proc. R. Soc. Lond. B., 265, 641-647
View in Google Scholar
DOI: https://doi.org/10.1098/rspb.1998.0342
TAMURA K., M. NEI, 1993, Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees, Mol. Biol. Evol., 10, 512-526
View in Google Scholar
WEBER J.L., P.E. MAY, 1989, Abundant class of human DNA polymorphism which can be typed using polymerase chain reaction, Am. J. Hum. Genet., 44, 388-396
View in Google Scholar
WEBER J.L., C. WONG, 1993, Mutation of human short tandem repeats, Hum. Mol. Genet., 2, 1123-28
View in Google Scholar
DOI: https://doi.org/10.1093/hmg/2.8.1123
WIEGAND P., T. BAJANOWSKI, B. BRINKMANN, 1993, DNA typing of debris from fingernails, Int. J. Legal Med., 106, 81-83
View in Google Scholar
DOI: https://doi.org/10.1007/BF01225045
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.