AI-powered live chatbots and smart tour guide apps in tourism: A literature review and future research directions

Autor

DOI:

https://doi.org/10.18778/0867-5856.2025.06

Słowa kluczowe:

AI technology, smart tour guide apps, AI-powered live chatbots, ChatGPT, inteligent features

Abstrakt

This study explores the critical intersection in the tourism sector combining artificial intelligence (AI) technologies with conventional methods. This research outlines three main goals: assessing the use of AI chatbots in the tourism industry, reviewing existing literature on intelligent tour guide apps, and pinpointing areas for further research. It focuses on incorporating AI into the tourism industry, highlighting the effectiveness of tools such as ChatGPT. The systematic literature review examines the use of ChatGPT in pre-trip, en route, and post-trip scenarios, analyzing its effects on customer engagement. Using technology acceptance model (TAM) and unified theory of acceptance and use of technology (UTAUT) frameworks, the adoption of automated intelligent tour guides is explored. The research follows a systematic review methodology, adhering to PRISMA guidelines for methodological rigor and has uncovered several factors that impact the adoption of AI-based intelligent tour guides, offering valuable insights for academic scholars and industry experts.

Pobrania

Brak dostępnych danych do wyświetlenia.

Bibliografia

Altinay, L., & Kozak, M. (2021). Revisiting destination competitiveness through chaos theory: The butterfly competitiveness model. Journal of Hospitality and Tourism Management, 49, 331–340. https://doi.org/10.1016/j.jhtm.2021.10.004
Google Scholar DOI: https://doi.org/10.1016/j.jhtm.2021.10.004

Aluri, A. (2017). Mobile augmented reality (MAR) game as a travel guide: Insights from Pokémon GO. Journal of Hospitality and Tourism Technology, 8(1), 55–72. https://doi.org/10.1108/JHTT-12-2016-0087
Google Scholar DOI: https://doi.org/10.1108/JHTT-12-2016-0087

Booth, P., Chaperon, S.A., Kennell, J.S., & Morrison, A.M. (2020). Entrepreneurship in island contexts: A systematic review of the tourism and hospitality literature. International Journal of Hospitality Management, 85, Article 102438. https://doi.org/10.1016/j.ijhm.2019.102438
Google Scholar DOI: https://doi.org/10.1016/j.ijhm.2019.102438

Buberwa, R.F., & Msusa, A. (2019). Developing a mobile GIS tour guide app for Dar-es-salaam City, Tanzania. International Journal of Scientific & Technology Research, 8(4), 237–242. https://www.ijstr.org/final-print/apr2019/Developing-A-Mobile-Gis-Tour-Guide-App-For-Dar-es-salaam-City-Tanzania.pdf
Google Scholar

Buhalis, D., Harwood, T., Bogicevic, V., Viglia, G., Beldona, S., & Hofacker, C. (2019). Technological disruptions in services: Lessons from tourism and hospitality. Journal of Service Management, 30(4), 484–506. https://doi.org/10.1108/JOSM-12-2018-0398
Google Scholar DOI: https://doi.org/10.1108/JOSM-12-2018-0398

Çalişkan, G., & Sevim, B. (2023). Use of service robots in hospitality: An observational study in terms of technology acceptance model. Tourism and Hospitality Research, 0(0). https://doi.org/10.1177/14673584231198438
Google Scholar DOI: https://doi.org/10.1177/14673584231198438

Calisto, M. de L., & Sarkar, S. (2024). A systematic review of virtual reality in tourism and hospitality: The known and the paths to follow. International Journal of Hospitality Management, 116, Article 103623. https://doi.org/10.1016/j.ijhm.2023.103623
Google Scholar DOI: https://doi.org/10.1016/j.ijhm.2023.103623

Cao, Y., Li, S., Liu, Y., Yan, Z., Dai, Y., Yu, P.S., & Sun, L. (2023). A comprehensive survey of AI-generated content (AIGC): A history of generative AI from GAN to ChatGPT. arXiv – Cornell University. https://doi.org/10.48550/arXiv.2303.04226
Google Scholar

Carvalho, I., & Ivanov, S. (2024). ChatGPT for tourism: Applications, benefits and risks. Tourism Review, 79(2), 290–303. https://doi.org/10.1108/TR-02-2023-0088
Google Scholar DOI: https://doi.org/10.1108/TR-02-2023-0088

Chang, C.-W., Zhang, J.Z., & Neslin, S.A. (2018). The role of the physical store: Developing customer value through ‘fit product’ purchase. Cheung Kong Graduate School of Business. https://english.ckgsb.edu.cn/the-role-of-the-physical-store-developing-customer-value-through-fit-product-purchases/
Google Scholar

Chatterjee, J., & Dethlefs, N. (2023). This new conversational AI model can be your friend, philosopher, and guide … and even your worst enemy. Patterns, 4(1), Article 100676. https://doi.org/10.1016/j.patter.2022.100676
Google Scholar DOI: https://doi.org/10.1016/j.patter.2022.100676

Chen, H., & Rahman, I. (2018). Cultural tourism: An analysis of engagement, cultural contact, memorable tourism experience and destination loyalty. Tourism Management Perspectives, 26, 153–163. https://doi.org/10.1016/j.tmp.2017.10.006
Google Scholar DOI: https://doi.org/10.1016/j.tmp.2017.10.006

Chi, O.H., Denton, G., & Gursoy, D. (2020). Artificially intelligent device use in service delivery: A systematic review, synthesis, and research agenda. Journal of Hospitality Marketing & Management, 29(7), 757–786. https://doi.org/10.1080/19368623.2020.1721394
Google Scholar DOI: https://doi.org/10.1080/19368623.2020.1721394

Chrastina, J. (2020). Title analysis of (systematic) scoping review studies: Chaos or consistency? Nursing & Health Sciences, 22(3), 557–562. https://doi.org/10.1111/nhs.12694
Google Scholar DOI: https://doi.org/10.1111/nhs.12694

Chui, M., Roberts, R., & Yee, L. (2022, December 20). Generative AI is here: How tools like ChatGPT could change your business. QuantumBlack, AI by McKinsey. https://www.mckinsey.com/capabilities/quantumblack/our-insights/generative-ai-is-here-how-tools-like-chatgpt-could-change-your-business
Google Scholar

Ciechanowski, L., Przegalinska, A., Magnuski, M., & Gloor, P. (2019). In the shades of the uncanny valley: An experimental study of human–chatbot interaction. Future Generation Computer Systems, 92, 539–548. https://doi.org/10.1016/j.future.2018.01.055
Google Scholar DOI: https://doi.org/10.1016/j.future.2018.01.055

Corne, A., Massot, V., & Merasli, S. (2023). The determinants of the adoption of blockchain technology in the tourism sector and metaverse perspectives. Information Technology & Tourism, 25(4), 605–633. https://doi.org/10.1007/s40558-023-00263-y
Google Scholar DOI: https://doi.org/10.1007/s40558-023-00263-y

Curran, K., & Smith, K. (2006). A location-based mobile tourist guide. Tourism and Hospitality Research, 6(2), 180–187. https://doi.org/10.1057/palgrave.thr.6040055
Google Scholar DOI: https://doi.org/10.1057/palgrave.thr.6040055

Dale, R. (2016). The return of the chatbots. Natural Language Engineering, 22(5), 811–817. https://doi.org/10.1017/S1351324916000243
Google Scholar DOI: https://doi.org/10.1017/S1351324916000243

Du, H., Li, Z., Niyato, D., Kang, J., Xiong, Z., Shen, X.(S.)., & Kim, D.I. (2023). Enabling AI-generated content (AIGC) services in wireless edge networks. arXiv – Cornell University. https://doi.org/10.48550/arXiv.2301.03220
Google Scholar DOI: https://doi.org/10.1109/MWC.004.2300015

Duan, J., Xie, C., & Morrison, A.M. (2022). Tourism crises and impacts on destinations: A systematic review of the tourism and hospitality literature. Journal of Hospitality & Tourism Research, 46(4), 667–695. https://doi.org/10.1177/1096348021994194
Google Scholar DOI: https://doi.org/10.1177/1096348021994194

Eisingerich, A.B., Marchand, A., Fritze, M.P., & Dong, L. (2019). Hook vs. hope: How to enhance customer engagement through gamification. International Journal of Research in Marketing, 36(2), 200–215. https://doi.org/10.1016/j.ijresmar.2019.02.003
Google Scholar DOI: https://doi.org/10.1016/j.ijresmar.2019.02.003

Elmohandes, N., & Marghany, M. (2024). Effective or ineffective? Using ChatGPT for staffing in the hospitality industry. European Journal of Tourism Research, 36, Article 3617. https://doi.org/10.54055/ejtr.v36i.3286
Google Scholar DOI: https://doi.org/10.54055/ejtr.v36i.3286

Fadhil, A., & Schiavo, G. (2019). Designing for health chatbots. arXiv – Cornell University. https://doi.org/10.48550/arXiv.1902.09022
Google Scholar

Feine, J., Morana, S., & Gnewuch, U. (2019). Measuring service encounter satisfaction with customer service chatbots using sentiment analysis. In Proceedings of the 14th International Conference on Wirtschaftsinformatik (WI2019), Siegen, Germany, February 24–27, 2019 (pp. 1115–1129). AIS. eLibrary. https://aisel.aisnet.org/wi2019/track10/papers/2/
Google Scholar

Fryer, L.K., Ainley, M., Thompson, A., Gibson, A., & Sherlock, Z. (2017). Stimulating and sustaining interest in a language course: An experimental comparison of chatbot and human task partners. Computers in Human Behavior, 75, 461–468. https://doi.org/10.1016/j.chb.2017.05.045
Google Scholar DOI: https://doi.org/10.1016/j.chb.2017.05.045

Gao, J., & Pan, Y. (2022). Evaluating influencing factors of tourists’ experiences with smart tour guide system: A mixed method research. Sustainability, 14(23), Article 16320. https://doi.org/10.3390/su142316320
Google Scholar DOI: https://doi.org/10.3390/su142316320

Go, E., & Sundar, S.S. (2019). Humanizing chatbots: The effects of visual, identity and conversational cues on humanness perceptions. Computers in Human Behavior, 97, 304–316. https://doi.org/10.1016/j.chb.2019.01.020
Google Scholar DOI: https://doi.org/10.1016/j.chb.2019.01.020

Go, H., Kang, M., & Suh, S.C. (2020). Machine learning of robots in tourism and hospitality: Interactive technology acceptance model (iTAM) – cutting edge. Tourism Review, 75(4), 625–636. https://doi.org/10.1108/TR-02-2019-0062
Google Scholar DOI: https://doi.org/10.1108/TR-02-2019-0062

Guo, Q., Zhu, D., Lin, M.-T.(B.)., Li, F.(S.)., Kim, P.B., Du, D., & Shu, Y. (2023). Hospitality employees’ technology adoption at the workplace: Evidence from a meta-analysis. International Journal of Contemporary Hospitality Management, 35(7), 2437–2464. https://doi.org/10.1108/IJCHM-06-2022-0701
Google Scholar DOI: https://doi.org/10.1108/IJCHM-06-2022-0701

Hill, J., Ford, W.R., & Farreras, I.G. (2015). Real conversations with artificial intelligence: A comparison between human–human online conversations and human–chatbot conversations. Computers in Human Behavior, 49, 245–250. https://doi.org/10.1016/j.chb.2015.02.026
Google Scholar DOI: https://doi.org/10.1016/j.chb.2015.02.026

Hinson, R.E., Osabutey, E.L.C., & Kosiba, J.P. (2020). Exploring the dialogic communication potential of selected African destinations’ place websites. Journal of Business Research, 116, 690–698. https://doi.org/10.1016/j.jbusres.2018.03.033
Google Scholar DOI: https://doi.org/10.1016/j.jbusres.2018.03.033

Hollebeek, L.D., & Belk, R. (2021). Consumers’ technology-facilitated brand engagement and wellbeing: Positivist TAM/PERMA- vs. Consumer Culture Theory perspectives. International Journal of Research in Marketing, 38(2), 387–401. https://doi.org/10.1016/j.ijresmar.2021.03.001
Google Scholar DOI: https://doi.org/10.1016/j.ijresmar.2021.03.001

Hollebeek, L.D., Srivastava, R.K., & Chen, T. (2019). S-D logic–informed customer engagement: Integrative framework, revised fundamental propositions, and application to CRM. Journal of the Academy of Marketing Science, 47, 161–185. https://doi.org/10.1007/s11747-016-0494-5
Google Scholar DOI: https://doi.org/10.1007/s11747-016-0494-5

Huang, S.(S.)., Weiler, B., & Assaker, G. (2015). Effects of interpretive guiding outcomes on tourist satisfaction and behavioral intention. Journal of Travel Research, 54(3), 344–358. https://doi.org/10.1177/0047287513517426
Google Scholar DOI: https://doi.org/10.1177/0047287513517426

Huang, Y.-C., Chang, L.L., Yu, C.-P., & Chen, J. (2019). Examining an extended technology acceptance model with experience construct on hotel consumers’ adoption of mobile applications. Journal of Hospitality Marketing & Management, 28(8), 957–980. https://doi.org/10.1080/19368623.2019.1580172
Google Scholar DOI: https://doi.org/10.1080/19368623.2019.1580172

Iskender, A. (2023). Holy or unholy? Interview with open AI’s ChatGPT. European Journal of Tourism Research, 34, Article 3414. https://doi.org/10.54055/ejtr.v34i.3169
Google Scholar DOI: https://doi.org/10.54055/ejtr.v34i.3169

Ivanov, S., & Webster, C. (Eds.). (2019). Robots, artificial intelligence, and service automation in travel, tourism and hospitality. Emerald Publishing. https://doi.org/10.1108/978-1-78756-687-320191014
Google Scholar DOI: https://doi.org/10.1108/9781787566873

Jiang, H., Cheng, Y., Yang, J., & Gao, S. (2022). AI-powered chatbot communication with customers: Dialogic interactions, satisfaction, engagement, and customer behavior. Computers in Human Behavior, 134, Article 107329. https://doi.org/10.1016/j.chb.2022.107329
Google Scholar DOI: https://doi.org/10.1016/j.chb.2022.107329

Kim, J.(J.)., & Fesenmaier, D.R. (2017). Sharing tourism experiences: The posttrip experience. Journal of Travel Research, 56(1), 28–40. https://doi.org/10.1177/0047287515620491
Google Scholar DOI: https://doi.org/10.1177/0047287515620491

Kim, J.Y., Chung, N., & Ahn, K.M. (2019). The impact of mobile tour information services on destination travel intention. Information Development, 35(1), 107–120. https://doi.org/10.1177/0266666917730437
Google Scholar DOI: https://doi.org/10.1177/0266666917730437

Kounavis, C.D., Kasimati, A.E., & Zamani, E.D. (2012). Enhancing the tourism experience through mobile augmented reality: Challenges and prospects. International Journal of Engineering Business Management, 4. https://doi.org/10.5772/51644
Google Scholar DOI: https://doi.org/10.5772/51644

Krajňák, T. (2021). The effects of terrorism on tourism demand: A systematic review. Tourism Economics, 27(8), 1736–1758. https://doi.org/10.1177/1354816620938900
Google Scholar DOI: https://doi.org/10.1177/1354816620938900

Lai, I.K.W. (2015). Traveler acceptance of an app-based mobile tour guide. Journal of Hospitality & Tourism Research, 39(3), 401–432. https://doi.org/10.1177/1096348013491596
Google Scholar DOI: https://doi.org/10.1177/1096348013491596

Lai, W.-C., & Hung, W.-H. (2017). Constructing the smart hotel architecture: A case study in Taiwan. In ICEB 2017 Proceedings (Dubai, UAE). AIS. eLibrary. https://aisel.aisnet.org/iceb2017/12
Google Scholar

Lee, S., & Choi, J. (2017). Enhancing user experience with conversational agent for movie recommendation: Effects of self-disclosure and reciprocity. International Journal of Human-Computer Studies, 103, 95–105. https://doi.org/10.1016/j.ijhcs.2017.02.005
Google Scholar DOI: https://doi.org/10.1016/j.ijhcs.2017.02.005

Leung, R. (2019). Smart hospitality: Taiwan hotel stakeholder perspectives. Tourism Review, 74(1), 50–62. https://doi.org/10.1108/TR-09-2017-0149
Google Scholar DOI: https://doi.org/10.1108/TR-09-2017-0149

Li, J.(J.)., Bonn, M.A., & Ye, B.H. (2019). Hotel employee’s artificial intelligence and robotics awareness and its impact on turnover intention: The moderating roles of perceived organizational support and competitive psychological climate. Tourism Management, 73, 172–181. https://doi.org/10.1016/j.tourman.2019.02.006
Google Scholar DOI: https://doi.org/10.1016/j.tourman.2019.02.006

Li, M., Yin, D., Qiu, H., & Bai, B. (2021). A systematic review of AI technology-based service encounters: Implications for hospitality and tourism operations. International Journal of Hospitality Management, 95, Article 102930. https://doi.org/10.1016/j.ijhm.2021.102930
Google Scholar DOI: https://doi.org/10.1016/j.ijhm.2021.102930

Li, S., & Xiao, Q. (2020). Classification and improvement strategy for design features of mobile tourist guide application: A Kano-IPA approach. Mobile Information Systems, (1), Article 8816130. https://doi.org/10.1155/2020/8816130
Google Scholar DOI: https://doi.org/10.1155/2020/8816130

Lin, M.-T.(B.)., Zhu, D., Liu, C., & Kim, P.B. (2022). A systematic review of empirical studies of pro-environmental behavior in hospitality and tourism contexts. International Journal of Contemporary Hospitality Management, 34(11), 3982–4006. https://doi.org/10.1108/IJCHM-12-2021-1478
Google Scholar DOI: https://doi.org/10.1108/IJCHM-12-2021-1478

Liu, D., Tong, C., Liu, Y., Yuan, Y., & Ju, C. (2016). Examining the adoption and continuous usage of context-aware services: An empirical study on the use of an intelligent tourist guide. Information Development, 32(3), 608–621. https://doi.org/10.1177/0266666914563358
Google Scholar DOI: https://doi.org/10.1177/0266666914563358

Liu, Y., Du, H., Niyato, D., Kang, J., Xiong, Z., Miao, C., Shen, X.(S.)., & Jamalipour, A. (2023). Blockchain-empowered lifecycle management for AI-generated content (AIGC) products in edge networks. arXiv – Cornell University. https://doi.org/10.48550/arXiv.2303.02836
Google Scholar DOI: https://doi.org/10.36227/techrxiv.22178126

McKercher, B., & Darcy, S. (2018). Re-conceptualizing barriers to travel by people with disabilities. Tourism Management Perspectives, 26, 59–66. https://doi.org/10.1016/j.tmp.2018.01.003
Google Scholar DOI: https://doi.org/10.1016/j.tmp.2018.01.003

Mondal, S., Das, S., & Vrana, V.G. (2023). How to bell the cat? A theoretical review of generative artificial intelligence towards digital disruption in all walks of life. Technologies, 11(2), Article 44. https://doi.org/10.3390/technologies11020044
Google Scholar DOI: https://doi.org/10.3390/technologies11020044

Morosan, C. (2012). Theoretical and empirical considerations of guests’ perceptions of biometric systems in hotels: Extending the technology acceptance model. Journal of Hospitality & Tourism Research, 36(1), 52–84. https://doi.org/10.1177/1096348010380601
Google Scholar DOI: https://doi.org/10.1177/1096348010380601

Nautiyal, R., Albrecht, J.N., & Nautiyal, A. (2023). ChatGPT and tourism academia. Annals of Tourism Research, 99, Article 103544. https://doi.org/10.1016/j.annals.2023.103544
Google Scholar DOI: https://doi.org/10.1016/j.annals.2023.103544

Neuhofer, B., Buhalis, D., & Ladkin, A. (2015). Smart technologies for personalized experiences: A case study in the hospitality domain. Electronic Markets, 25(3), 243–254. https://doi.org/10.1007/s12525-015-0182-1
Google Scholar DOI: https://doi.org/10.1007/s12525-015-0182-1

Niu, H. (2023). The effect of intelligent tour guide system based on attraction positioning and recommendation to improve the experience of tourists visiting scenic spots. Intelligent Systems with Applications, 19, Article 200263. https://doi.org/10.1016/j.iswa.2023.200263
Google Scholar DOI: https://doi.org/10.1016/j.iswa.2023.200263

Peres, R., Correia, A., & Moital, M. (2011). The indicators of intention to adopt mobile electronic tourist guides. Journal of Hospitality and Tourism Technology, 2(2), 120–138. https://doi.org/10.1108/17579881111154236
Google Scholar DOI: https://doi.org/10.1108/17579881111154236

Pillai, R., & Sivathanu, B. (2020). Adoption of AI-based chatbots for hospitality and tourism. International Journal of Contemporary Hospitality Management, 32(10), 3199–3226. https://doi.org/10.1108/IJCHM-04-2020-0259
Google Scholar DOI: https://doi.org/10.1108/IJCHM-04-2020-0259

Prasetya, S.A., Erwin, A., & Galinium, M. (2018). Implementing Indonesian language chatbot for ecommerce site using artificial intelligence markup language (AIML). Prosiding Seminar Nasional Pakar 2018, 1, 313–322. https://doi.org/10.25105/pakar.v0i0.2652
Google Scholar DOI: https://doi.org/10.25105/pakar.v0i0.2652

Rashkin, H., Smith, E.M., Li, M., & Boureau, Y.-L. (2019). Towards empathetic open-domain conversation models: A new benchmark and dataset. In A. Korhonen, D. Traum & L. Màrquez (Eds.), Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (pp. 5370–5381). Association for Computational Linguistics. https://aclanthology.org/P19-1534.pdf
Google Scholar DOI: https://doi.org/10.18653/v1/P19-1534

Reinartz, W., Wiegand, N., & Imschloss, M. (2019). The impact of digital transformation on the retailing value chain. International Journal of Research in Marketing, 36(3), 350–366. https://doi.org/10.1016/j.ijresmar.2018.12.002
Google Scholar DOI: https://doi.org/10.1016/j.ijresmar.2018.12.002

Ruiz-Alba, J.L., & Martín-Penã, M.-L. (2020). Guest editorial. Journal of Business & Industrial Marketing, 35(3), 385–389. https://doi.org/10.1108/JBIM-03-2020-419
Google Scholar DOI: https://doi.org/10.1108/JBIM-03-2020-419

Rutz, O., Aravindakshan, A., & Rubel, O. (2019). Measuring and forecasting mobile game app engagement. International Journal of Research in Marketing, 36(2), 185–199. https://doi.org/10.1016/j.ijresmar.2019.01.002
Google Scholar DOI: https://doi.org/10.1016/j.ijresmar.2019.01.002

Santini, F. de O., Ladeira, W., Jr., & Sampaio, C.H. (2018). The role of satisfaction in fashion marketing: A meta-analysis. Journal of Global Fashion Marketing, 9(4), 305–321. https://doi.org/10.1080/20932685.2018.1503556
Google Scholar DOI: https://doi.org/10.1080/20932685.2018.1503556

Schamari, J., & Schaefers, T. (2015). Leaving the home turf: How brands can use webcare on consumer-generated platforms to increase positive consumer engagement. Journal of Interactive Marketing, 30(1), 20–33. https://doi.org/10.1016/j.intmar.2014.12.001
Google Scholar DOI: https://doi.org/10.1016/j.intmar.2014.12.001

Schuetzler, R.M., Grimes, G.M., & Giboney, J.S. (2019). The effect of conversational agent skill on user behavior during deception. Computers in Human Behavior, 97, 250–259. https://doi.org/10.1016/j.chb.2019.03.033
Google Scholar DOI: https://doi.org/10.1016/j.chb.2019.03.033

Shin, H.H., Jeong, M., So, K.K.F., & DiPietro, R. (2022). Consumers’ experience with hospitality and tourism technologies: Measurement development and validation. International Journal of Hospitality Management, 106, Article 103297. https://doi.org/10.1016/j.ijhm.2022.103297
Google Scholar DOI: https://doi.org/10.1016/j.ijhm.2022.103297

Shumanov, M., & Johnson, L. (2021). Making conversations with chatbots more personalized. Computers in Human Behavior, 117, Article 106627. https://doi.org/10.1016/j.chb.2020.106627
Google Scholar DOI: https://doi.org/10.1016/j.chb.2020.106627

Sia, P.Y.-H., Saidin, S.S., & Iskandar, Y.H.P. (2022). Systematic review of mobile travel apps and their smart features and challenges. Journal of Hospitality and Tourism Insights, 6(5), 2115–2138. https://doi.org/10.1108/JHTI-02-2022-0087
Google Scholar DOI: https://doi.org/10.1108/JHTI-02-2022-0087

Stokel-Walker, C., & Van Noorden, R. (2023). What ChatGPT and generative AI mean for science. Nature, 614(7947), 214–216. https://doi.org/10.1038/d41586-023-00340-6
Google Scholar DOI: https://doi.org/10.1038/d41586-023-00340-6

Sun, W., Tang, S., & Liu, F. (2021). Examining perceived and projected destination image: A social media content analysis. Sustainability, 13(6), Article 3354. https://doi.org/10.3390/su13063354
Google Scholar DOI: https://doi.org/10.3390/su13063354

Sundar, S.S., Go, E., Kim, H.-S., & Zhang, B. (2015). Communicating art, virtually! Psychological effects of technological affordances in a virtual museum. International Journal of Human–Computer Interaction, 31(6), 385–401. https://doi.org/10.1080/10447318.2015.1033912
Google Scholar DOI: https://doi.org/10.1080/10447318.2015.1033912

Susnjak, T. (2022). ChatGPT: The end of online exam integrity? arXiv – Cornell University. https://doi.org/10.48550/arXiv.2212.09292
Google Scholar

Taecharungroj, V. (2023). “What can ChatGPT do?”: Analyzing early reactions to the innovative AI chatbot on Twitter. Big Data and Cognitive Computing, 7(1), Article 35. https://doi.org/10.3390/bdcc7010035
Google Scholar DOI: https://doi.org/10.3390/bdcc7010035

Tarantino, E., De Falco, I., & Scafuri, U. (2019). A mobile personalized tourist guide and its user evaluation. Information Technology & Tourism, 21(3), 413–455. https://doi.org/10.1007/s40558-019-00150-5
Google Scholar DOI: https://doi.org/10.1007/s40558-019-00150-5

Tsai, W.-H.S., Liu, Y., & Chuan, C.-H. (2021). How chatbots’ social presence communication enhances consumer engagement: The mediating role of parasocial interaction and dialogue. Journal of Research in Interactive Marketing, 15(3), 460–482. https://doi.org/10.1108/JRIM-12-2019-0200
Google Scholar DOI: https://doi.org/10.1108/JRIM-12-2019-0200

Tussyadiah, I., & Miller, G. (2019). Perceived impacts of artificial intelligence and responses to positive behaviour change intervention. In J. Pesonen & J. Neidhardt (Eds.), Information and Communication Technologies in Tourism 2019: Proceedings of the International Conference in Nicosia, Cyprus, January 30–February 1, 2019 (pp. 359–370). Springer. https://doi.org/10.1007/978-3-030-05940-8_28
Google Scholar DOI: https://doi.org/10.1007/978-3-030-05940-8_28

Vendemia, M.A. (2017). When do consumers buy the company? Perceptions of interactivity in company-consumer interactions on social networking sites. Computers in Human Behavior, 71, 99–109. https://doi.org/10.1016/j.chb.2017.01.046
Google Scholar DOI: https://doi.org/10.1016/j.chb.2017.01.046

Walters, G., Jiang, Y., & Li, S. (2025). Physiological measurements in hospitality and tourism research: A systematic review and new theoretical directions. Journal of Hospitality & Tourism Research, 49(3), 417–432. https://doi.org/10.1177/10963480231199990
Google Scholar DOI: https://doi.org/10.1177/10963480231199990

Wang, D., & Cheung, C. (2024). Decent work in tourism and hospitality – a systematic literature review, classification, and research recommendations. International Journal of Contemporary Hospitality Management, 36(7), 2194–2213. https://doi.org/10.1108/IJCHM-10-2022-1263
Google Scholar DOI: https://doi.org/10.1108/IJCHM-10-2022-1263

Wang, R., Yang, F., Zheng, S., & Sundar, S.S. (2016). Why do we pin? New gratifications explain unique activities in Pinterest. Social Media + Society, 2(3). https://doi.org/10.1177/2056305116662173
Google Scholar DOI: https://doi.org/10.1177/2056305116662173

Wong, I.A., Lian, Q.L., & Sun, D. (2023). Autonomous travel decision-making: An early glimpse into ChatGPT and generative AI. Journal of Hospitality and Tourism Management, 56, 253–263. https://doi.org/10.1016/j.jhtm.2023.06.022
Google Scholar DOI: https://doi.org/10.1016/j.jhtm.2023.06.022

Wong, I.A., Lin, S.K., Lin, Z.(CJ)., & Xiong, X. (2022). Welcome to stay-at-home travel and virtual attention restoration. Journal of Hospitality and Tourism Management, 51, 207–217. https://doi.org/10.1016/j.jhtm.2022.03.016
Google Scholar DOI: https://doi.org/10.1016/j.jhtm.2022.03.016

Wu, H.-C., & Cheng, C.-C. (2018). Relationships between technology attachment, experiential relationship quality, experiential risk and experiential sharing intentions in a smart hotel. Journal of Hospitality and Tourism Management, 37, 42–58. https://doi.org/10.1016/j.jhtm.2018.09.003
Google Scholar DOI: https://doi.org/10.1016/j.jhtm.2018.09.003

Xiang, Z., Magnini, V.P., & Fesenmaier, D.R. (2015). Information technology and consumer behavior in travel and tourism: Insights from travel planning using the internet. Journal of Retailing and Consumer Services, 22, 244–249. https://doi.org/10.1016/j.jretconser.2014.08.005
Google Scholar DOI: https://doi.org/10.1016/j.jretconser.2014.08.005

Xu, W., & Zhang, X. (2021). Online expression as well-be(com)ing: A study of travel blogs on Nepal by Chinese female tourists. Tourism Management, 83, Article 104224. https://doi.org/10.1016/j.tourman.2020.104224
Google Scholar DOI: https://doi.org/10.1016/j.tourman.2020.104224

Yao, Y., Jia, G., & Hou, Y. (2021). Impulsive travel intention induced by sharing conspicuous travel experience on social media: A moderated mediation analysis. Journal of Hospitality and Tourism Management, 49, 431–438. https://doi.org/10.1016/j.jhtm.2021.10.012
Google Scholar DOI: https://doi.org/10.1016/j.jhtm.2021.10.012

Zhou, G., Chu, G., Li, L., & Meng, L. (2020). The effect of artificial intelligence on China’s labor market. China Economic Journal, 13(1), 24–41. https://doi.org/10.1080/17538963.2019.1681201
Google Scholar DOI: https://doi.org/10.1080/17538963.2019.1681201

Opublikowane

2025-06-11

Jak cytować

Ghasemi, V., Yarahmadi, P., & Kuhzady, S. (2025). AI-powered live chatbots and smart tour guide apps in tourism: A literature review and future research directions. Turyzm/Tourism, 35(1), 217–227. https://doi.org/10.18778/0867-5856.2025.06

Numer

Dział

Artykuły

Funding data