Analiza danych niemetrycznych w badaniu wyposażenia gospodarstw domowych w dobra trwałe. Wybrane aspekty
DOI:
https://doi.org/10.18778/0208-6018.330.08Słowa kluczowe:
analiza danych niemetrycznych, dobra trwałe, analiza korespondencji, regresja logistyczna, drzewa klasyfikacyjne, CART, gospodarstwa domoweAbstrakt
Pomiar wyposażenia gospodarstw domowych jest kluczowy w wielu aspektach oceny stanu społeczno‑ekonomicznego kraju i jego obywateli. Zapotrzebowanie (sprzedaż) jest traktowane jako jeden z kluczowych wskaźników stanu koniunktury w gospodarce. Podobnie analiza i ocena poziomu wyposażenia gospodarstw domowych w dobra trwałe są rozpatrywane w kontekście pomiaru jakości życia. W badaniu wyposażenia gospodarstw domowych mierzy się liczbę i jakość dóbr, w jakie wyposażone są gospodarstwa domowe. Pomiar wyposażenia gospodarstw domowych prowadzony jest najczęściej za pomocą słabych skali pomiarowych, nominalnej i porządkowej. Takie dane wymagają stosowania wyspecjalizowanych narzędzi analizy i modelowania. W opracowaniu zostanie podjęta dyskusja o możliwościach statystycznej analizy takich danych i ich modelowania oraz o problemach wnioskowania na podstawie uzyskanych wyników.
Pobrania
Bibliografia
Abdullah L., Khadiah S. (2011), Fuzzy Linguistic for Measuring Customer Satisfaction, “International Journal of Latest Trends in Computing”, no. 2(2), pp. 220–224.
Google Scholar
Adams E., Fagot R., Robinson R. (1965), A theory of appropriate statistics, “Psychometrika”, vol. 30, pp. 99–127.
Google Scholar
Amendola N., Vecchi G. (2014), Durable Goods and Poverty Measurement, World Bank Policy Research Working Paper No. 7105, Washington.
Google Scholar
Blackorby C., Donaldson D. (1987), Welfare Ratios and Distributionally Sensitive Cost‑Benefit Analysis, “Journal of Public Economics”, no. 34, pp. 265–290.
Google Scholar
Blackorby C., Donaldson D. (1988), Money Metric Utility. A Harmless Normalization?, “Journal of Economic Theory”, no. 46, pp. 120–129.
Google Scholar
Borovicka A. (2014), Fuzzy Weights Estimation Method Based on the Linguistic Expression of Criteria Relevance, “Economic Review. Central European Review of Economics”, no. 17, pp. 13–23.
Google Scholar
Breiman L., Friedman J., Olshen R., Stone C. (1984), Classification and regression trees, Chapman & Hall, London.
Google Scholar
Chu K. (2010), The Application of Fuzzy Linguistic Scale on Internet Questionnaire Survey, “International Journal of Organisation and Innovation”, no. 2(4), pp. 1–10.
Google Scholar
Deaton A. (1997), The Analysis of Household Surveys. Microeconometric Analysis for Development Policy, Johns Hopkins University Press, Baltimore.
Google Scholar
Deaton A., Zaidi S. (2002), Guidelines for Constructing Consumption Aggregates for Welfare Analysis, Living Standards Measurement Study World Bank Working Paper no. 135, Washington, https://openknowledge.worldbank.org/handle/10986/14101 [accessed: 12.10.2016].
Google Scholar
Diewert W. (2004), Durables and User Costs in: Consumer Price Index Manual. Theory and Practice, chapter 23, ILO, IMF, OECD, UNECE, Eurostat, World Bank.
Google Scholar
Diewert W. (2009), Durables and Owner‑Occupied Housing in a Consumer Price Index, [in:] W. Diewert, J. Greenlees, C. Hulten (eds.), Price Index Concepts and Measurements, University of Chicago Press, Chicago.
Google Scholar
Dziechciarz‑Duda M. (2007), Klasyfikacja konsumentów na rynku dóbr trwałego użytkowania w Polsce, “Taksonomia”, no. 13, pp. 389–396.
Google Scholar
Dziechciarz‑Duda M., Król A. (2017), An application of multivariate statistical analysis for the valuation of durable goods brands, “Statistics in Transition New Series”, vol. 18, no. 1, pp. 75–90.
Google Scholar
Dziechciarz J. (2004a), O możliwości doskonalenia polityki cenowej przy pomocy metody conjoint measurement oraz regresji hedonicznej, [in:] M. Rószkiewicz (ed.), Identyfikacja struktur rynkowych. Pomiar, modelowanie, symulacja, SGH, Warszawa.
Google Scholar
Dziechciarz J. (2004b), Regresja hedoniczna: próba wskazania obszarów stosowalności, [in:] A. Zeliaś (ed.), Przestrzenno‑czasowe modelowanie zjawisk gospodarczych, Akademia Ekonomiczna, Kraków.
Google Scholar
Dziechciarz J., Dziechciarz‑Duda M., Przybysz K. (2010), Household Possession of Consumer Durables on Background of Some Poverty Lines, [in:] H. Locarek‑Junge, C. Weihs (eds.), Classification as a Tool for Research, Springer, Berlin, pp. 735–742.
Google Scholar
Fisher I. (1911), The Purchasing Power of Money, its Determination and Relation to Credit, Interest, and Crises, McMillan, New York.
Google Scholar
Framework for Statistics on the Distribution of Household Income, Consumption and Wealth (2013), OECD, Paris.
Google Scholar
Gatnar E., Walesiak M. (2011), Analiza danych jakościowych i symbolicznych z wykorzystaniem programu R, Beck, Warszawa.
Google Scholar
General household survey (2014), Statistics South Africa, Pretoria, https://www.statssa.gov.za/publications/p0318/p03182013.pdf [accessed: 28.09.2016].
Google Scholar
Gillingham R. (1983), Measuring the Cos of Shelter for Homeowners. Theoretical and Empirical Considerations, “The Review of Economics and Statistics”, no. 2(65), pp. 254–265.
Google Scholar
Goodhart C. (2001), What Weight should be given to Asset Price in Measurement of Inflation?, “The Economic Journal”, vol. 111, pp. 335–356.
Google Scholar
Hulten C., Wykoff F. (1981), The Measurement of Economic Depreciation, [in:] C. Hulten (ed.), Depreciation, Inflation, and the Taxation of Income from Capital, Urban Institute Press, Washington.
Google Scholar
Jorgenson D. (1963), Capital Theory an Investment Behaviour, “American Economic Review”, no. 53, pp. 247–259.
Google Scholar
Katz A. (1983), Valuing the Services of consumer Durables, “Review of Income and Wealth”, no. 29(4), pp. 405–427.
Google Scholar
Keynes J. (1936), The General Theory of Employment, Interest, and Money, Harcourt, New York.
Google Scholar
Kramer J. (1993), Konsumpcja. Prawidłowości, struktura, przyszłość, PWE, Warszawa.
Google Scholar
Kramer J. (1997), Konsumpcja w gospodarce rynkowej, PWE, Warszawa.
Google Scholar
Lanjouw P. (2009), Constructing a Consumption Aggregate for the Purpose of Welfare Analysis. Principles, Issues and Recommendations Arising from the Case of Brazil), Paper prepared in the World Bank for the OECD/University of Maryland Conference entitled: Measuring Poverty, Income Inequality and Social Exclusion: Lessons from Europe, March 16/17, Paris.
Google Scholar
Liou T., Wang M. (1994), Subjective Assessment of Mental Workload. A Fuzzy Linguistic Multi criteria Approach, “Fuzzy Sets and Systems”, no. 62(2), pp. 155–165.
Google Scholar
Lippe P. von der (2007), Index Theory and Price Statistics, Lang Publishing, Oxford.
Google Scholar
Mayntz R., Holm K., Hübner P. (1985), Wprowadzenie do metod socjologii empirycznej, PWN, Warszawa.
Google Scholar
Moulton B. (2004), The System of National Accounts for the New Economy. What Should Change?, “Review of Income and Wealth”, no. 50(2), pp. 261–278.
Google Scholar
Odekon M. (ed.) (2015), Encyclopaedia of World Poverty, Sage, Thousand Oaks.
Google Scholar
Offer A. (2005), The Challenge of Affluence Self‑Control and Well‑Being in the United States and Britain since 1950, Oxford University Press, Oxford.
Google Scholar
Ravallion M. (1998), Poverty Lines in Theory and Practice. Living Standards Measurement Study, LSMS Working Paper no. 133, World Bank, Washington, http://documents.worldbank.org/curated/en/916871468766156239/pdf/multi‑page.pdf [accessed: 28.09.2016].
Google Scholar
Rószkiewicz M. (2002), Narzędzia statystyczne w analizach marketingowych, C.H. Beck, Warszawa.
Google Scholar
Samuelson P. (1974), Complementarity. An Essay on the 40th Anniversary of the Hicks – Allen Revolution in Demand Theory, “Journal of Economic Literature”, no. 15, pp. 24–55.
Google Scholar
Slesnik D. (2000), Consumption and Social Welfare. Living Standards and Their Distribution in the United States, Cambridge University Press, Cambridge.
Google Scholar
Social Diagnosis (2015), Council for Social Monitoring, Social Diagnosis integrated database, www.diagnoza.com [accessed: 11.05.2016].
Google Scholar
Stevens S. (1959), Measurement, Psychophysics and Utility, [in:] C. Churchman, P. Ratoosh (eds.), Measurement; Definitions and Theories, Wiley, New York.
Google Scholar
System of National Accounts (2008), Commission of the European Communities, IMF, UN, World Bank, Brussels–Luxembourg–New York–Paris–Washington.
Google Scholar
Walesiak M. (1996), Metody analizy danych marketingowych, PWN, Warszawa.
Google Scholar
Walesiak M. (2000), Skale pomiaru zmiennych, [in:] M. Walesiak, A. Bąk, Conjoint analysis w badaniach marketingowych, Akademia Ekonomiczna, Wrocław.
Google Scholar
Zadeh L. (1975), The Concept of a Linguistic Variable and its Application to Approximate Reasoning, “Information Sciences”, part I, no. 8, pp. 199–249, part II, no. 8, pp. 301–357.
Google Scholar