Zastosowanie pakietów programu R do porównania stabilności grupowania

Autor

  • Dorota Rozmus University of Economics in Katowice, Faculty of Finance and Insurance, Department of Economic and Financial Analysis

DOI:

https://doi.org/10.18778/0208-6018.330.05

Słowa kluczowe:

grupowanie, taksonomia, stabilność

Abstrakt

W ostatnich latach dużo uwagi poświęca się zagadnieniu stabilności metod taksonomicznych, czyli odpowiedzi na pytanie o to, na ile struktura odkryta przez daną metodę rzeczywiście jest obecna w danych. W literaturze zaproponowano wiele różnych sposobów pomiaru stabilności. W ślad za rozważaniami teoretycznymi w tym zakresie idzie także rozwój narzędzi informatycznych pozwalających na praktyczne zastosowanie zaproponowanych sposobów badania stabilności. Wśród tych narzędzi jest także kilka bibliotek w programie R, np. clValid, clv, fpc, ClusterStability, pvclust. Celem artykułu jest porównanie wyników badania stabilności grupowania za pomocą wybranych bibliotek w programie R.

Pobrania

Brak dostępnych danych do wyświetlenia.

Bibliografia

Ben‑Hur A., Guyon I . (2003), Detecting Stable Clusters Using Principal Component Analysis, “Methods in Molecular Biology”, vol. 224, pp. 59–182.
Google Scholar

Brock G., Pihur V., Datta S., Datta S. (2011), clValid: An R Package for Cluster Validation, http://cran.us.r‑project.org/web/packages/clValid/vignettes/clValid.pdf.
Google Scholar

Fang Y., Wang J. (2012), Selection of the Number of Clusters via the Bootstrap Method, “Computational Statistics and Data Analysis”, vol. 56, pp. 468–477.
Google Scholar

Granichin O., Volkovich Z., Toledano‑Kitai D. (2015), Cluster Validation, “Randomized Algorithms in Automatic Control and Data Mining”, vol. 67, pp. 163–228.
Google Scholar

Hosein A., Behrouz M., Hamid P., Mohsen M. (2011), An Asymmetric Criterion for Cluster Validation, “Developing Concepts in Applied Intelligence”, Studies in Computational Intelligence”, vol. 363, pp. 1–14.
Google Scholar

Koepke H., Clarke B. (2013), A Bayesian Criterion for Cluster Stability, “Statistical Analysis and Data Mining: The ASA Data Science Journal”, vol. 6, issue 4, pp. 346–374.
Google Scholar

Ryazanov V. (2016), About Estimation of Quality of Clustering Results via Its Stability, “Intelligent Data Analysis”, vol. 20(1), pp. 5–15.
Google Scholar

Shamir O., Tishby N. (2008), Cluster Stability for Finite Samples, “Advances in Neural Information Processing Systems”, vol. 20, pp. 1297–1304.
Google Scholar

Volkovich Z., Barzily Z., Toledano‑Kitai D., Avros R. (2010), The Hotteling’s Metric as a Cluster Stability Measure, “Computer Modelling and New Technologies”, vol. 14, no. 4, pp. 65–72.
Google Scholar

Wang J. (2010), Consistent Selection of the Number of Clusters via Cross‑validation, “Biometrika”, vol. 97, pp. 893–904.
Google Scholar

Opublikowane

2017-11-15

Jak cytować

Rozmus, D. (2017). Zastosowanie pakietów programu R do porównania stabilności grupowania. Acta Universitatis Lodziensis. Folia Oeconomica, 4(330), [77]-86. https://doi.org/10.18778/0208-6018.330.05

Numer

Dział

Artykuł

Podobne artykuły

1 2 3 4 > >> 

Możesz również Rozpocznij zaawansowane wyszukiwanie podobieństw dla tego artykułu.