Uwagi o wybranych optymalnych układach wagowych
DOI:
https://doi.org/10.18778/0208-6018.356.01Słowa kluczowe:
D‑efektywne układy, sprężynowe układy wagoweAbstrakt
W artykule zostały przedstawione zagadnienia związane z konstrukcją wysoce D‑efektywnych sprężynowych układów wagowych. Podane zostały warunki określające zależności pomiędzy parametrami tych układów oraz przykłady konstrukcji.
Pobrania
Bibliografia
Banerjee K. S. (1975), Weighing Designs for Chemistry, Medicine, Economics, Operation Research, Statistics, Marcell Dekker Inc., New York.
Google Scholar
Bulutoglu D. A., Ryan K. J. (2009), D‑optimal and near D‑optimal 2k fractional factorial designs of Resolution V, “Journal of Statistical Planning and Inference”, no. 139, pp. 16–22.
Google Scholar
Ceranka B., Graczyk M. (2010), Some construction of optimum weighing designs, “Acta Universitatis Lodziensis. Folia Oeconomica”, no. 235, pp. 235–239.
Google Scholar
Ceranka B., Graczyk M. (2012), Notes on the optimum chemical balance weighing designs, “Acta Universitatis Lodziensis. Folia Oeconomica”, no. 269, pp. 91–101.
Google Scholar
Ceranka B., Graczyk M. (2014), On certain A-optimal biased spring balance weighing designs, “Statistics in Transition. New Series”, Spring, vol. 15(2), pp. 317–326.
Google Scholar
Ceranka B., Graczyk M. (2018), Highly D-efficient designs for even number of objects, “Revstat‑Statistical Journal”, no. 16, pp. 475–486.
Google Scholar
Ceranka B., Graczyk M. (2019), Recent developments in D-optimal designs, “Communications in Statistics – Theory and Methods”, vol. 48(6), pp. 1470–1480, https://doi.org/10.1080/03610926.2018.1433851
Google Scholar
Ceranka B., Katulska K. (1987a), Zastosowanie optymalnych sprężynowych układów wagowych, “Siedemnaste Colloquium Metodologiczne z Agro-Biometrii”, PAN, pp. 98–108.
Google Scholar
Ceranka B., Katulska K. (1987b), Zastosowanie teorii sprężynowych układów wagowych do analizy doświadczeń z mieszankami, “Listy Biometryczne”, no. XXIV, pp. 17–26.
Google Scholar
Ceranka B., Katulska K. (1989), Application of the biased spring balance weighing theory to estimation of differences of line effects for legume content, “Biometrical Journal”, no. 31, pp. 103–110.
Google Scholar
Gail Z., Kiefer J. (1982), Construction methods for D‑optimum weighing designs when n ≡ 3 mod 4, “The Annals of Statistics”, no. 10, pp. 502–510.
Google Scholar
Gawande B. N., Patkar A. Y. (1999), Application of factorial design for optimization of Cyclodextrin Glycosyltransferase production from Klebsiella Pneumoniae AS–22, “Biotechnology and Bioengineering”, no. 64, N2, pp. 168–173.
Google Scholar
Graczyk M. (2013), Some applications on weighing designs, “Biometrical Letters”, vol. 50(1), pp. 15–26.
Google Scholar
Graczyk M., Ceranka B. (2019), A highly D-efficient spring balance weighing designs for an even number of objects, “Acta Universitatis Lodziensis. Folia Oeconomica”, no. 344, pp. 17–27.
Google Scholar
Jacroux M., Notz W. (1983), On the Optimality of Spring Balance Weighing Designs, “The Annals of Statistics”, no. 11, pp. 970–978.
Google Scholar
Katulska K., Smaga Ł. (2010), On some construction of D-optimal chemical balance weighing designs, “Colloquium Biometricum”, no. 40, pp. 37–45.
Google Scholar
Koukouvinos Ch. (1996), Linear models and D-optimal designs for n ≡ 2 mod 4, “Statistics and Probability Letters”, no. 26, pp. 329–332.
Google Scholar
Raghavarao D. (1971), Constructions and Combinatorial Problems in Designs of Experiments, John Wiley Inc., New York.
Google Scholar
Shah K. R., Sinh B. K. (1989), Theory of Optimal Designs, Springer-Verlag, Berlin.
Google Scholar