Application of Spatial Regression in Employment Characteristics Modelling

Authors

  • Ewa Katarzyna Pośpiech University of Economics in Katowice, Faculty of Management, Department of Statistics, Econometrics and Mathematics
  • Adrianna Mastalerz-Kodzis University of Economics in Katowice, Faculty of Management, Department of Statistics, Econometrics and Mathematics

DOI:

https://doi.org/10.18778/0208-6018.335.05

Keywords:

spatial modelling, spatial error model, spatial lag model, employment

Abstract

The article analyses the employment characteristics. The employment rate was studied in selected regions of Europe, and subsequently, for selected variables: total population employed, women employed and men employed, classic econometric models were constructed and the necessity of including the spatial factor in the process of modelling was verified. The demographic variables and GDP per capita were chosen as explaining variables of the model. It was analysed whether including a spatial approach in the models would improve their quality. Two basic spatial models were taken into consideration: the spatial error model and the spatial lag model, the former of which turned out to be the right tool for the analyses.

Downloads

Download data is not yet available.

References

Anselin L. (2006), Spatial Analysis with GeoDa. 4. Spatial Regression, University of Illinois, Urbana Champaign.
Google Scholar

Anselin L., Bera A. (1998), Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics, [in:] A. Ullah, D.E.A. Giles (eds.), Handbook of Applied Economic Statistics, Springer‑Verlag, Berlin.
Google Scholar

Arbia G. (2006), Spatial Econometrics: Statistical Foundations and Applications to Regional Convergence, Springer‑Verlag, Berlin.
Google Scholar

Cliff A.D., Ord J.K. (1981), Spatial Process: Models and Applications, Pion, London.
Google Scholar

Eurostat, http://ec.europa.eu/eurostat/web/regions/data/database [accessed: 24.10.2016].
Google Scholar

Kopczewska K. (2011), Ekonometria i statystyka przestrzenna z wykorzystaniem programu R Cran, CeDeWu, Warszawa.
Google Scholar

Overmars K.P., Koning G.H.J. de, Veldkamp A. (2003), Spatial autocorrelation in multi‑scale land use models, “Ecological Modelling”, no. 164, pp. 257–270, http://dx.doi.org/10.1016/S0304-3800(03)00070‑X.
Google Scholar

Pietrzykowski R. (2011), Wykorzystanie metod statystycznej analizy przestrzennej w badaniach ekonomicznych, “Roczniki Ekonomiczne Kujawsko‑Pomorskiej Szkoły Wyższej w Bydgoszczy”, vol. 4, pp. 97–112.
Google Scholar

Pośpiech E. (2015), Analiza przestrzenna bezrobocia w Polsce, “Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach”, vol. 227, pp. 59–74.
Google Scholar

Pośpiech E. (2016), Modelowanie przestrzenne charakterystyk rynku pracy, “Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach”, vol. 265, pp. 69–79.
Google Scholar

Pośpiech E., Mastalerz‑Kodzis A. (2015), Autokorelacja przestrzenna wybranych charakterystyk społeczno‑ekonomicznych, “Metody Ilościowe w Badaniach Ekonomicznych”, vol. 16, no. 4, pp. 85–94.
Google Scholar

Pośpiech E., Mastalerz‑Kodzis A. (2016), Spatial and Temporal Analysis of Labour Market Characteristics, “Folia Oeconomica Stetinensia” [in print].
Google Scholar

Sikora J., Woźniak A. (2007), Autokorelacja przestrzenna wskaźników infrastruktury wodno‑ściekowej woj. małopolskiego, “Infrastruktura i Ekologia Terenów Wiejskich”, vol. 4, no. 2, pp. 315–329.
Google Scholar

Suchecki B. (ed.) (2010), Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych, C.H. Beck, Warszawa.
Google Scholar

Tobler W. (1970), A Computer Model Simulating Urban Growth in Detroit Region, “Economic Geography”, vol. 46, no. 2, pp. 234–240.
Google Scholar

Zeug‑Żebro K. (2014), Analiza przestrzenna procesu starzenia się polskiego społeczeństwa, “Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania”, vol. 36, no. 2, pp. 441–456.
Google Scholar

Downloads

Published

2018-05-16

How to Cite

Pośpiech, E. K., & Mastalerz-Kodzis, A. (2018). Application of Spatial Regression in Employment Characteristics Modelling. Acta Universitatis Lodziensis. Folia Oeconomica, 3(335), 63–74. https://doi.org/10.18778/0208-6018.335.05

Issue

Section

Articles