Application of Spatial Regression in Employment Characteristics Modelling
DOI:
https://doi.org/10.18778/0208-6018.335.05Keywords:
spatial modelling, spatial error model, spatial lag model, employmentAbstract
The article analyses the employment characteristics. The employment rate was studied in selected regions of Europe, and subsequently, for selected variables: total population employed, women employed and men employed, classic econometric models were constructed and the necessity of including the spatial factor in the process of modelling was verified. The demographic variables and GDP per capita were chosen as explaining variables of the model. It was analysed whether including a spatial approach in the models would improve their quality. Two basic spatial models were taken into consideration: the spatial error model and the spatial lag model, the former of which turned out to be the right tool for the analyses.
Downloads
References
Anselin L. (2006), Spatial Analysis with GeoDa. 4. Spatial Regression, University of Illinois, Urbana Champaign.
Google Scholar
Anselin L., Bera A. (1998), Spatial Dependence in Linear Regression Models with an Introduction to Spatial Econometrics, [in:] A. Ullah, D.E.A. Giles (eds.), Handbook of Applied Economic Statistics, Springer‑Verlag, Berlin.
Google Scholar
Arbia G. (2006), Spatial Econometrics: Statistical Foundations and Applications to Regional Convergence, Springer‑Verlag, Berlin.
Google Scholar
Cliff A.D., Ord J.K. (1981), Spatial Process: Models and Applications, Pion, London.
Google Scholar
Eurostat, http://ec.europa.eu/eurostat/web/regions/data/database [accessed: 24.10.2016].
Google Scholar
Kopczewska K. (2011), Ekonometria i statystyka przestrzenna z wykorzystaniem programu R Cran, CeDeWu, Warszawa.
Google Scholar
Overmars K.P., Koning G.H.J. de, Veldkamp A. (2003), Spatial autocorrelation in multi‑scale land use models, “Ecological Modelling”, no. 164, pp. 257–270, http://dx.doi.org/10.1016/S0304-3800(03)00070‑X.
Google Scholar
Pietrzykowski R. (2011), Wykorzystanie metod statystycznej analizy przestrzennej w badaniach ekonomicznych, “Roczniki Ekonomiczne Kujawsko‑Pomorskiej Szkoły Wyższej w Bydgoszczy”, vol. 4, pp. 97–112.
Google Scholar
Pośpiech E. (2015), Analiza przestrzenna bezrobocia w Polsce, “Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach”, vol. 227, pp. 59–74.
Google Scholar
Pośpiech E. (2016), Modelowanie przestrzenne charakterystyk rynku pracy, “Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach”, vol. 265, pp. 69–79.
Google Scholar
Pośpiech E., Mastalerz‑Kodzis A. (2015), Autokorelacja przestrzenna wybranych charakterystyk społeczno‑ekonomicznych, “Metody Ilościowe w Badaniach Ekonomicznych”, vol. 16, no. 4, pp. 85–94.
Google Scholar
Pośpiech E., Mastalerz‑Kodzis A. (2016), Spatial and Temporal Analysis of Labour Market Characteristics, “Folia Oeconomica Stetinensia” [in print].
Google Scholar
Sikora J., Woźniak A. (2007), Autokorelacja przestrzenna wskaźników infrastruktury wodno‑ściekowej woj. małopolskiego, “Infrastruktura i Ekologia Terenów Wiejskich”, vol. 4, no. 2, pp. 315–329.
Google Scholar
Suchecki B. (ed.) (2010), Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych, C.H. Beck, Warszawa.
Google Scholar
Tobler W. (1970), A Computer Model Simulating Urban Growth in Detroit Region, “Economic Geography”, vol. 46, no. 2, pp. 234–240.
Google Scholar
Zeug‑Żebro K. (2014), Analiza przestrzenna procesu starzenia się polskiego społeczeństwa, “Studia i Prace Wydziału Nauk Ekonomicznych i Zarządzania”, vol. 36, no. 2, pp. 441–456.
Google Scholar
Downloads
Additional Files
- APPLICATION OF SPATIAL REGRESSION IN EMPLOYMENT CHARACTERISTICS MODELLING_Figure 1
- APPLICATION OF SPATIAL REGRESSION IN EMPLOYMENT CHARACTERISTICS MODELLING_Figure 2
- APPLICATION OF SPATIAL REGRESSION IN EMPLOYMENT CHARACTERISTICS MODELLING_Figure 3
- APPLICATION OF SPATIAL REGRESSION IN EMPLOYMENT CHARACTERISTICS MODELLING
- APPLICATION OF SPATIAL REGRESSION IN EMPLOYMENT CHARACTERISTICS MODELLING