On Testing Significance of the Multivariate Rank Correlation Coefficient
DOI:
https://doi.org/10.18778/0208-6018.335.02Keywords:
multivariate Spearman’s rho, copula function, permutation tests, Monte Carlo studyAbstract
The Spearman’s rho is a measure of the strength of the association between two variables. There are some extensions of this coefficient for the multivariate case. Measures of the multivariate association which are the generalisation of the bivariate Spearman’s rho are considered in the literature. These measures are based on copula functions. This article presents a proposal of the testing for the multivariate Spearman’s rank correlation coefficient. The proposed test is based on the permutation method. The test statistic used in the permutation test is based on the empirical copula function. The properties of the proposed method have been described using computer simulations.
Downloads
References
Bedő J., Ong Ch.S. (2015), Multivariate Spearman’s rho for rank aggregation, arxiv.org [accessed: 12.12.2016].
Google Scholar
Berry K.J., Johnston J.E., Mielke Jr. P.W. (2014), A Chronicle of Permutation Statistical Methods, Springer International Publishing, New York.
Google Scholar
Domański Cz., Pruska K. (2000), Nieklasyczne metody statystyczne, Polskie Wydawnictwo Ekonomiczne, Warszawa.
Google Scholar
Efron B., Tibshirani R. (1993), An Introduction to the Bootstrap, Chapman & Hall, New York.
Google Scholar
Good P. (2005), Permutation, Parametric and Bootstrap Tests of Hypotheses, Science Business Media Inc., New York.
Google Scholar
Joe H. (1990), Multivariate Concordance, “Journal of Multivariate Analysis”, no. 35, pp. 12–30.
Google Scholar
Kończak G. (2016), Testy permutacyjne. Teoria i zastosowania, Uniwersytet Ekonomiczny w Katowicach, Katowice.
Google Scholar
Lehmann E.L. (2009), Parametric vs. nonparametric: Two alternative methodologies, “Journal of Nonparametric Statistics”, no. 21 pp. 397–405.
Google Scholar
Nelsen R.B. (1996), Nonparametric Measures of Multivariate Association, “IMS Lecture Notes – Monograph Series”, no. 28, pp. 223–232.
Google Scholar
Nelsen R.B. (1999), An Introduction to Copulas, Springer Verlag, New York.
Google Scholar
Schmid F., Schmidt R. (2006), Bootstraping Spearman’s Multivariate Rho, Proceedings of COMPSTAT 2006, pp. 759–766.
Google Scholar
Schmid F., Schmidt R. (2007), Multivariate Extensions of Spearman’s Rho and Related Statistics, “Statistics & Probability Letters”, no. 77, pp. 407–416.
Google Scholar
Sheskin D.J. (2004), Handbook of Parametric and Nonparametric Statistical Procedures, Chapman & Hall/CRC, Boca Raton.
Google Scholar
Wywiał J. (2004), Wprowadzenie do wnioskowania statystycznego, Akademia Ekonomiczna w Katowicach, Katowice.
Google Scholar
Zar J.H. (1972), Significance Testing of the Spearman Rank Correlation Coefficient, “Journal of the American Statistical Association”, vol. 67, no. 339, pp. 578–580.
Google Scholar
Zar J.H. (2010), Biostatistical Analysis, Pearson Prentice Hall, New Jersey.
Google Scholar