On the Monitoring Complex Multivariate Processes
DOI:
https://doi.org/10.18778/0208-6018.322.04Keywords:
multivariate processes, process monitoring, permutation tests, Monte Carlo studyAbstract
This article presents a proposal of the method of monitoring complex multidimensional processes. The problem relates to monitoring the quality of production with some attribute variables when the production is performed by some operators. To describe the quality status we used the matrix in which elements are the numbers of defective units.
The proposed method uses permutation tests. The "out-of-order" signal is obtained by comparing the matrix in period t to the matrix from stable process. The test statistic used in permutation test is based on a function of distance between matrices. The properties of the proposed method have been described using computer simulation.
Downloads
References
Berry K.J., Johnston J.E., Mielke Jr. P.W. (2014), A Chronicle of Permutation Statistical Methods, Springer International Publishing, New York.
Google Scholar
Deza M.M., Deza E. (2013), Encyclopedia of Distances, Springer Verlag, Berlin.
Google Scholar
Domański Cz., Pekasiewicz D., Baszczyńska A., Witaszczyk A. (2014), Testy statystyczne w procesie podejmowania decyzji, Wydawnictwo Uniwersytetu Łódzkiego.
Google Scholar
Efron B., Tibshirani R. (1993), An Introduction to the Bootstrap, Chapman & Hall. New York.
Google Scholar
Good P. (2005), Permutation, Parametric and Bootstrap Tests of Hypotheses, Science Business Media, Inc.
Google Scholar
Kończak G. (2007), Metody statystyczne w sterowaniu jakością produkcji, Akademia Ekonomiczna w Katowicach.
Google Scholar
Kończak G. (2012), Wprowadzenie do symulacji komputerowych, Uniwersytet Ekonomiczny w Katowicach.
Google Scholar
Kuratowski K. (1980), Wstęp do teorii mnogości i topologii, PWN, Warszawa.
Google Scholar
Lehmann E.L. (2009), Parametric vs. nonparametric: Two alternative methodologies, “Journal of Nonparametric Statistics”, vol. 21, pp. 397–405.
Google Scholar
Mielke P.W., Berry K.J. Jr. (2007), Permutation Methods. A Distance Function Approach. Springer Science+Business Media, LLC. New York.
Google Scholar
Montgomery D.C. (2009), Introduction to Statistical Quality Control, John Wiley & Sons, Inc., Arizona State University.
Google Scholar
Santos-Fernández E. (2012), Multivariate Statistical Quality Control Using R, Springer Science+Business Media, LLC., New York.
Google Scholar
Walesiak M. (2011), Uogólniona miara odległości GDM w statystycznej analizie wielowymiarowej z wykorzystaniem programu R, Wydawnictwo Akademii Ekonomicznej im. Oskara Langego we Wrocławiu.
Google Scholar