The Application of Discriminant Analysis to the Identification of Key Factors of the Development of Polish Cities

Authors

  • Barbara Batóg University of Szczecin, Faculty of Economics and Management, Institute of Econometrics and Statistics, Department of Operations Research and Applied Mathematics in Economics http://orcid.org/0000-0001-9236-7405
  • Jacek Batóg University of Szczecin, Faculty of Economics and Management, Institute of Econometrics and Statistics, Department of Econometrics http://orcid.org/0000-0003-1413-7692

DOI:

https://doi.org/10.18778/0208-6018.343.11

Keywords:

development of cities, discriminant analysis, determinants of city growth

Abstract

Due to limited resources, effective urban development policies require the identification of key development areas and priorities. The existing development strategies or results of statistical analyses can be used for this purpose. In the latter case, one of methods of multidimensional analysis can be used – discriminant analysis. Although it is applied to many areas on a microeconomic scale, e.g. in predicting the bankruptcy of enterprises, it was rarely used to assess the competitive position or the dynamics of development of cities. The main aim of the paper is to identify the most important factors of development of Polish cities with powiat status and to analyse changes of these factors in time. Apart from typical areas, such as investment, income, employment, debt, or migration, the analysis uses qualitative variables which allow us to assess whether the size of the city and its location determine the dynamics of city development. The authors have found that the key factors determining the development of the largest Polish cities are related to the situation on the labour market and investments incurred by companies as well as by the cities themselves.

Downloads

Download data is not yet available.

References

Baker J. L., Gadgil G. U. (eds.) (2017), East Asia and Pacific Cities. Expanding Opportunities for the Urban Poor, Urban Development Series, The World Bank Group, Washington.
Google Scholar

Batóg B., Batóg J. (2012), Wykorzystanie analizy dyskryminacyjnej do identyfikacji czynników determinujących stopę zwrotu z inwestycji na rynku kapitałowym, “Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, Taksonomia 19. Klasyfikacja i Analiza Danych – Teoria i Zastosowania”, no. 242, pp. 387–395.
Google Scholar

Batóg J. (2009), Wykorzystanie analizy dyskryminacyjnej z autokorelacją przestrzenną do klasyfikacji obiektów, “Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, Taksonomia 16. Klasyfikacja i Analiza Danych – Teoria i Zastosowania, no. 47, pp. 382–389.
Google Scholar

Batóg B., Batóg J. (2017), Zastosowanie analizy korespondencji w analizie związku między wielkością oraz poziomem i dynamiką rozwoju polskich miast, “Prace Naukowe Uniwersytetu Ekonomicznego we Wrocławiu, Taksonomia 28. Klasyfikacja i Analiza Danych – Teoria i Zastosowania”, no. 468, pp. 20–28.
Google Scholar

Batóg B., Wawrzyniak K. (1997), Wykorzystanie funkcji dyskryminacyjnej do oceny kondycji finansowo‑ekonomicznej spółek i przedsiębiorstw I, II, III i IV transzy alokowanych do Narodowych Funduszy Inwestycyjnych, “Przegląd Statystyczny”, no. 44(1), pp. 105–115
Google Scholar

Borzacchiello M. T., Nijkamp P., Koomen E. (2010), Accessibility and Urban Development: A Grid‑Based Comparative Statistical Analysis of Dutch Cities, “Environment and Planning B: Planning and Design”, no. 37(1), pp. 148–169, http://doi.org/10.1068/b34126.
Google Scholar

Deilmann C., Lehmann I., Reissmann D., Hennersdorf J. (2016), Data Envelopment Analysis of Cities – Investigation of the Ecological and Economic Efficiency of Cities Using a Benchmarking Concept from Production Management, “Ecological Indicators”, no. 67, pp. 798–806.
Google Scholar

Dorocki S. (2012), Regional Differentiation in the Development of French Towns – Quantitative Analysis, “Barometr Regionalny”, no. 3(29), pp. 13–31.
Google Scholar

Drobniak A., Plac K. (2015), Urban resilience – transformacja miast poprzemysłowych Aglomeracji Górnośląskiej, “Studia Ekonomiczne, Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach”, no. 250, “Ekonomia”, no. 4, pp. 75–98.
Google Scholar

Dziaduch S. (2012), Development Potential of Cities in the Lubelskie Voivodship, “Barometr Regionalny”, no. 3(29), p. 77–97.
Google Scholar

El‑Hanjouri M. M.R., Hamad B. S. (2015), Using Cluster Analysis and Discriminant Analysis Methods in Classification with Application on Standard of Living Family in Palestinian Areas, “International Journal of Statistics and Applications”, no. 5(5), pp. 213–222, www.sapub.org/global/showpaperpdf.aspx?doi=10.5923/j.statistics.20150505.05 [accessed: 15.10.2018].
Google Scholar

Elhadary Y. A.E., Samat N. (2015), Integrating Geographic Information System and Discriminant Analysis in Modelling Urban Spatial Growth: An Example from Seberang Perai Region, Penang State, Malaysia, “Asian Social Science”, no. 11(2), pp. 32–40.
Google Scholar

Fanni Z., Khakpour B. A., Heydari A. (2014), Evaluating the Regional Development of Border Cities by TOPSIS Model (case study: Sistan and Baluchistan Province, Iran), “Sustainable Cities and Society”, no. 10, pp. 80–86.
Google Scholar

Heffner K., Gibas P. (2013), Poziom metropolitalności wybranych ośrodków w Polsce. Znaczenie wag i zmiennych, “Acta Universitatis Lodziensis. Folia Oeconomica”, no. 293, pp. 11–26.
Google Scholar

Jaba E., Jemna D. V., Viorica D., Lacatusu T. (2006), Discriminant Analysis in the Study of Romanian Regional Economic Development in View of European Integration, https://ssrn.com/abstract=931613 [accessed: 15.10.2018].
Google Scholar

Jałowiecki M. (2015), Rozwój chińskich miast w latach 2008–2011, “Zeszyty Naukowe Wyższej Szkoły Bankowej w Poznaniu”, no. 59(2), pp. 147–166.
Google Scholar

Johnson R. A., Wichern D. W. (2007), Applied Multivariate Statistical Analysis, 6th Edition, Pearson Prentice Hall, Upper Saddle River.
Google Scholar

Kola‑Bezka M., Czupich M., Ignasiak‑Szulc A. (2016), Smart Cities in Central and Eastern Europe: Viable Future or Unfulfilled Dream?, “Journal of International Studies”, no. 9(1), pp. 76–87, http://doi.org/10.14254/2071-8330.2016/9-1/6.
Google Scholar

Lopez Ruiz V. R., Nevado Pena D., Alfaro Navarro J. L., Grigorescu A. (2014), Human Development European City Index: Methodology and Results, “Romanian Journal of Economic Forecasting”, no. XVII(3), pp. 72–87.
Google Scholar

Mata D. da, Deichmann U., Henderson J. V., Lall S. V., Wang H. G. (2005), Determinants of City Growth in Brazil, World Bank Policy Research Working Paper 3723, September, pp. 1–49.
Google Scholar

Mavrič J., Tominc P., Bobek V. (2014), Qualitative Indicators for Measuring the Performance Development of Selected Cities, “Našegospodarstvo/Our Economy”, no. 60(3–4), pp. 13–25, http://doi.org/10.7549/ourecon.2014.3-4.02.
Google Scholar

McLachlan G. J. (2004), Discriminant Analysis and Statistical Pattern Recognition, John Wiley & Sons, Hoboken.
Google Scholar

McManus P. (2012), Measuring Urban Sustainability: the Potential and Pitfalls of City Rankings, “Australian Geographe”, no. 43(4), pp. 411–424, http://dx.doi.org/10.1080/00049182.2012.731301.
Google Scholar

McManus P., Haughton G. (2006), Planning with Ecological Footprints: A Sympathetic Critique of Theory and Practice, “Environment and Urbanization”, no. 18(1), pp. 113–27.
Google Scholar

Męczyński M., Konecka‑Szydłowska B., Gadziński J. (2010), Poziom rozwoju społeczno‑gospodarczego i klasyfikacja małych miast w Wielkopolsce, Uniwersytet im. Adama Mickiewicza w Poznaniu, Instytut Geografii Społeczno‑Ekonomicznej i Gospodarki Przestrzennej, Poznań.
Google Scholar

OECD (2010), Cities and Climate Change, OECD Publishing, Paris, https://doi.org/10.1787/9789264091375-en.
Google Scholar

Panek T. (2009), Metody statystyczne wielowymiarowej analizy porównawczej, Szkoła Główna Handlowa w Warszawie, Warszawa.
Google Scholar

Runge J. (2007), Metody badań w geografii społeczno‑ekonomicznej, Wydawnictwo Uniwersytetu Śląskiego, Katowice.
Google Scholar

Silicon Valley Index (2010), Joint Venture, Silicon Valley Network Inc., San Jose.
Google Scholar

Sun X., Liu X., Li F., Tao Y., Song Y. (2015), Comprehensive Evaluation of Different Scale Cities’ Sustainable Development for Economy, Society, and Ecological Infrastructure in China, “Journal of Cleaner Production”, pp. 1–9, http://dx.doi.org/10.1016/j.jclepro.2015.06.002.
Google Scholar

Tacq J. (2007), Multivariate Analysis in Social Science Research, Sage Publications, London.
Google Scholar

Wentz E. A., Song Y., Anderson S., Roy S. S., Myint S. W., Stefanov W. L. (2010), Discriminant Analysis with Spatial Weights for Urban Land Cover Classification, GeoDaCenter for Geospatial Analysis and Computation, Arizona State University, Working Paper No. 21, pp. 1–23.
Google Scholar

Wiśniewski M. (2013), Smart cities – definicje i pomiar (przegląd koncepcji), “Prace Naukowe WWSZIP”, no. 24(4), “Samorząd Terytorialny a Polityka Lokalna”, pp. 187–200.
Google Scholar

Downloads

Published

2019-09-13

How to Cite

Batóg, B., & Batóg, J. (2019). The Application of Discriminant Analysis to the Identification of Key Factors of the Development of Polish Cities. Acta Universitatis Lodziensis. Folia Oeconomica, 4(343), 181–194. https://doi.org/10.18778/0208-6018.343.11

Issue

Section

Articles

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 > >> 

You may also start an advanced similarity search for this article.