# A Sequent System without Improper Derivations

## Authors

• Katsumi Sasaki Nanzan University, Faculty of Science and Technology, 18 Yamazato-Cho, Showa-Ku, Nagoya, 466, Japan

## Keywords:

Sequent system, improper derivation, natural deduction

## Abstract

In the natural deduction system for classical propositional logic given by G. Gentzen, there are some inference rules with assumptions discharged by the rule. D. Prawitz calls such inference rules improper, and others proper. Improper inference rules are more complicated and are often harder to understand than the proper ones.

In the present paper, we distinguish between proper and improper derivations by using sequent systems. Specifically, we introduce a sequent system $$\vdash_{\bf Sc}$$ for classical propositional logic with only structural rules, and prove that $$\vdash_{\bf Sc}$$ does not allow improper derivations in general. For instance, the sequent $$\Rightarrow p \to q$$ cannot be derived from the sequent $$p \Rightarrow q$$ in $$\vdash_{\bf Sc}$$. In order to prove the failure of improper derivations, we modify the usual notion of truth valuation, and using the modified valuation, we prove the completeness of $$\vdash_{\bf Sc}$$. We also consider whether an improper derivation can be described generally by using $$\vdash_{\bf Sc}$$.

## References

W. Breckenridge, O. Magidor, Arbitrary reference, Philosophical Studies: An International Journal for Philosophy in the Analytic Tradition, vol. 158(3) (2012), pp. 377–400, DOI: https://doi.org/10.1007/s11098-010-9676-z

A. Chagrov, M. Zakharyaschev, Modal logic, Oxford Logic Guides, Oxford University Press, New York (1997).

K. Fine, Reasoning with arbitrary objects, Aristotelian Society Series, Basil Blackwell, Oxford (1986).

G. Gentzen, Untersuchungen über das logisch Schließen, Mathematische Zeitschrift, vol. 39 (1934–35), pp. 176–210, 405–431, DOI: https://doi.org/10.1007/BF01201353

P. Hertz, Über Axiomensysteme für beliebige Satzsysteme, Mathematische Annalen, vol. 101 (1929), pp. 457–514.

A. Indrzejczak, A Survey of Nonstandard Sequent Calculi, Studia Logica, vol. 102 (2014), pp. 1295–1322, DOI: https://doi.org/10.1007/s11225-014-9567-y

D. Prawitz, Natural Deduction: A Proof-Theoretical Study, Almqvist & Wiksell, Stockholm (1965).

K. Robering, Ackermann’s Implication for Typefree Logic, Journal of Logic and Computation, vol. 11(1) (2001), pp. 5–23, DOI: https://doi.org/10.1093/logcom/11.1.5

P. Schroeder-Heister, Resolution and the Origins of Structural Reasoning: Early Proof-Theoretic Ideas of Hertz and Gentzen, The Bulletin of Symbolic Logic, vol. 8(2) (2002), pp. 246–265, DOI: https://doi.org/10.2178/bsl/1182353872

R. Suszko, W sprawie logiki bez aksjomatów, Kwartalnik Filozoficzny, vol. 17 (1948), pp. 199–205.

R. Suszko, Formalna teoria wartości logicznych, Studia Logica, vol. 6 (1957), pp. 145–320, DOI: https://doi.org/10.1007/BF02547932

2021-10-14

## How to Cite

Sasaki, K. (2021). A Sequent System without Improper Derivations. Bulletin of the Section of Logic, 51(1), 91–108. https://doi.org/10.18778/0138-0680.2021.21

## Section

Research Article  