A Classification of Improper Inference Rules

Authors

  • Katsumi Sasaki Nanzan University, Faculty of Science and Technology, 18 Yamazato-Cho image/svg+xml

DOI:

https://doi.org/10.18778/0138-0680.2022.12

Keywords:

sequent system, improper inference rule, natural deduction

Abstract

In the natural deduction system for classical propositional logic given by G. Gentzen, there are some inference rules with assumptions discharged by the rule. D. Prawitz calls such inference rules improper as opposed to proper ones. Improper inference rules are more complicated than proper ones and more difficult to understand. In 2022, we provided a sequent system based solely on the application of proper rules. In the present paper, on the basis of our system from 2022, we classify improper inference rules.

References

W. Breckenridge, O. Magidor, Arbitrary reference, Philosophical Studies, vol. 158(3) (2012), pp. 377–400, DOI: https://doi.org/10.1007/s11098-010-9676-z.
Google Scholar DOI: https://doi.org/10.1007/s11098-010-9676-z

A. Chagrov, M. Zakharyaschev, vol. 35 of Oxford Logic Guides, Clarendon Press, New York.
Google Scholar

K. Fine, Reasoning with arbitrary objects, vol. 3 of Aristotelian Society Series, Oxford University Press, New York (1985).
Google Scholar

G. Gentzen, Untersuchungen über das logisch Schließen, Mathematische Zeitschrift, vol. 39 (1934–35), pp. 176–210, 405–431, DOI:
Google Scholar DOI: https://doi.org/10.1007/BF01201363

https://doi.org/10.1007/BF01201353.
Google Scholar DOI: https://doi.org/10.1007/BF01201353

P. Hertz, Über Axiomensysteme für beliebige Satzsysteme, Mathematische Annalen, vol. 101 (1929), pp. 457–514, DOI:
Google Scholar DOI: https://doi.org/10.1007/BF01454856

https://doi.org/10.1007/BF01454856.
Google Scholar DOI: https://doi.org/10.1007/BF01454856

A. Indrzejczak, A Survey of Nonstandard Sequent Calculi, Studia Logica, vol. 102 (2014), pp. 1295–1322, DOI: https://doi.org/10.1007/s11225-014-9567-y.
Google Scholar DOI: https://doi.org/10.1007/s11225-014-9567-y

D. Prawitz, Natural Deduction: A Proof-Theoretical Study, Almqvist & Wiksell, Stockholm (1965).
Google Scholar

K. Robering, Ackermann’s Implication for Typefree Logic, Journal of Logic and Computation, vol. 11(1) (2001), pp. 5–23, DOI:
Google Scholar DOI: https://doi.org/10.1093/logcom/11.1.5

https://doi.org/10.1093/logcom/11.1.5.
Google Scholar DOI: https://doi.org/10.1093/logcom/11.1.5

K. Sasaki, A sequent system without improper derivations, The Bulletin of Symbolic Logic, vol. 51(1) (2022), pp. 91–108, DOI:
Google Scholar DOI: https://doi.org/10.18778/0138-0680.2021.21

https://doi.org/10.18778/0138-0680.2021.21.
Google Scholar DOI: https://doi.org/10.18778/0138-0680.2021.21

P. Schroeder-Heister, Resolution and the Origins of Structural Reasoning: Early Proof-Theoretic Ideas of Hertz and Gentzen, The
Google Scholar

Bulletin of Symbolic Logic, vol. 8 (2002), pp. 246–265.
Google Scholar DOI: https://doi.org/10.2178/bsl/1182353872

R. Suszko, W sprawie logiki bez aksjomatów, Kwartalnik Filozoficzny, vol. 17 (1948), pp. 199–205.
Google Scholar

R. Suszko, Formalna teoria wartości logicznych, Studia Logica, vol. 6 (1957), pp. 145–320, DOI: https://doi.org/10.1007/BF02547932.
Google Scholar DOI: https://doi.org/10.1007/BF02547932

Downloads

Published

2022-06-23

How to Cite

Sasaki, K. (2022). A Classification of Improper Inference Rules. Bulletin of the Section of Logic, 51(2), 243–266. https://doi.org/10.18778/0138-0680.2022.12

Issue

Section

Research Article