From Intuitionism to Brouwer's Modal Logic
DOI:
https://doi.org/10.18778/0138-0680.2020.22Keywords:
intuitionistic logic, Kripke frames, Brouwer's modal logicAbstract
We try to translate the intuitionistic propositional logic INT into Brouwer's modal logic KTB. Our translation is motivated by intuitions behind Brouwer's axiom p →☐◊p The main idea is to interpret intuitionistic implication as modal strict implication, whereas variables and other positive sentences remain as they are. The proposed translation preserves fragments of the Rieger-Nishimura lattice which is the Lindenbaum algebra of monadic formulas in INT. Unfortunately, INT is not embedded by this mapping into KTB.
References
[1] O. Becker, Zur Logik der Modalitäten, Jahrbuch für Philosophie und phänomenologische Forschung, vol. 11 (1930), pp. 497–548.
Google Scholar
[2] P. Blackburn, M. de Rijke, Y. Venema, Modal logic, vol. 53 of Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge (2001), DOI: http://dx.doi.org/10.1017/CBO9781107050884
Google Scholar
DOI: https://doi.org/10.1017/CBO9781107050884
[3] A. Chagrov, M. Zakharyaschev, Modal Logic, vol. 35 of Oxford Logic Guides, Oxford University Press, Oxford (1997).
Google Scholar
[4] G. Hughes, M. Cresswell, An Introduction to Modal Logic, Methuen and Co. Ltd., London (1968).
Google Scholar
[5] C. I. Lewis, C. H. Langford, Symbolic Logic, Appleton-Century-Crofts, New York (1932).
Google Scholar
[6] K. Matsumoto, Reduction theorem in Lewis's sentential calculi, Mathematica Japonicae, vol. 3 (1955), pp. 133–135.
Google Scholar
[7] J. C. C. McKinsey, A. Tarski, Some Theorems About the Sentential Calculi of Lewis and Heyting, Journal of Symbolic Logic, vol. 13(1) (1948), pp. 1–15, DOI: http://dx.doi.org/10.2307/2268135
Google Scholar
DOI: https://doi.org/10.2307/2268135
[8] V. V. Rybakov, A modal analog for Glivenko's theorem and its applications, Notre Dame Journal of Formal Logic, vol. 3(2) (1992), pp. 244–248, DOI: http://dx.doi.org/10.1305/ndj/1093636103
Google Scholar
DOI: https://doi.org/10.1305/ndjfl/1093636103
[9] I. B. Shapirovsky, Glivenko's theorem, finite height, and local tabularity (2018), arXiv:1806.06899.
Google Scholar
[10] A. Wroński, J. Zygmunt, Remarks on the free pseudo-boolean algebra with one-element free-generating set, Reports on Mathematical Logic, vol. 2 (1974), pp. 77–81.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2020 Bulletin of the Section of Logic
![Creative Commons License](http://i.creativecommons.org/l/by-nc-nd/4.0/88x31.png)
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.