Identity, equality, nameability and completeness. Part II

Authors

  • María Manzano Spain, Salamanca, University of Salamanca, Department of Philosophy
  • Manuel Crescencio Moreno Spain, Salamanca, University of Salamanca, Department of Philosophy

DOI:

https://doi.org/10.18778/0138-0680.47.3.01

Keywords:

identity, equality, completeness, nameability, first-order modal logic, hybrid logic, hybrid type theory, equational hybrid propositional type theory

Abstract

This article is a continuation of our promenade along the winding roads of identity, equality, nameability and completeness. We continue looking for a place where all these concepts converge. We assume that identity is a binary relation between objects while equality is a symbolic relation between terms. Identity plays a central role in logic and we have looked at it from two different points of view. In one case, identity is a notion which has to be defined and, in the other case, identity is a notion used to define other logical concepts. In our previous paper, [16], we investigated whether identity can be introduced by definition arriving to the conclusion that only in full higher-order logic with standard semantics a reliable definition of identity is possible. In the present study we have moved to modal logic and realized that here we can distinguish in the formal language between two different equality symbols, the first one shall be interpreted as extensional genuine identity and only applies for objects, the second one applies for non rigid terms and has the characteristic of synonymy. We have also analyzed the hybrid modal logic where we can introduce rigid terms by definition and can express that two worlds are identical by using the nominals and the @ operator. We finish our paper in the kingdom of identity where the only primitives are lambda and equality. Here we show how other logical concepts can be defined in terms of the identity relation. We have found at the end of our walk a possible point of convergence in the logic Equational Hybrid Propositional Type Theory (EHPTT), [14] and [15].

References

P. B. Andrews, A reduction of the axioms for the theory of propositional type theory, Fundamenta Mathematicae 52 (1963), pp. 354–350.
Google Scholar

P. B. Andrews, An Introduction to Mathematical Logic and Type Theory: To Truth Through Proof, Academic Press, Orlando, San Diego, New York, Austin, Boston, London, Sydney, Tokyo, Toronto (1986).
Google Scholar

P. B. Andrews, A Bit of History Related to Equality as a Logical Primitive, [in:] The Life and Work of Leon Henkin. Essays on His Contributions, Springer Basil, (2014), pp. 67–71.
Google Scholar

C. Areces, P. Blackburn, A. Huertas and M. Manzano, Completeness in Hybrid Type Theory, Journal of Philosophical Logic 43/2–3 (2014), pp. 209–238. DOI: 10.1007/s10992-012-9260-4.
Google Scholar

P. Blackburn and J. van Benthem, Modal Logic: A Semantic Perspective, [in:] Handbook of Modal Logic, Elsevier, (2007), pp. 1–84.
Google Scholar

P. Blackburn, A. Huertas, M. Manzano and F. Jorgensen, Henkin and Hybrid Logic, [in:] The Life and Work of Leon Henkin. Essays on His Contributions, Springer Basil, (2014), pp. 279–306.
Google Scholar

M. Fitting and R. L. Mendelsohn, First-Order Modal Logic, Kluwer Academic Publishers, Dordrecht, Boston, London (1998).
Google Scholar

M. Fitting, Types, Tableaus, and Gödel’s God, Kluwer Academic Publishers, Dordrecht, Boston, London (2002).
Google Scholar

L. Henkin, The completeness of the first order functional calculus, The Journal of Symbolic Logic 14 (1949), pp. 159–166.
Google Scholar

L. Henkin, Completeness in the theory of types, The Journal of Symbolic Logic 15 (1950), pp. 81–91.
Google Scholar

L. Henkin, A Theory of Propositional Types, Fundamenta Mathematicae 52 (1963), pp. 323–344. Errata, Fundamenta Mathematicae 53 (1964), p. 119.
Google Scholar

L. Henkin, Identity as a logical primitive, Philosophia. Philosophical Quarterly of Israel 5/1–2 (1975), pp. 31–45.
Google Scholar

G. E. Hughes and M. J. Cresswell, A New Introduction to Modal Logic, Routledge, London, New York (1996).
Google Scholar

M.Manzano, M. A.Martins and A. Huertas, A Semantics for Equational Hybrid Propositional Type Theory, Bulletin of the Section of Logic 43:3/4 (2014), pp. 121–138.
Google Scholar

M. Manzano, M. A. Martins and A. Huertas, Completeness in Equational Hybrid Propositional Type Theory, Studia Logica, first online. DOI: 10.1007/s11225-018-9833-5
Google Scholar

M. Manzano and M. C. Moreno, Identity, Equality, Nameability and Completeness, Bulletin of the Section of Logic 46:3/4 (2017), pp. 169–195.
Google Scholar

W. V. O. Quine, Reference and Modality, [in:] From a Logical Point of View, Harvard University Press, Cambridge, MA (1953), pp. 139–159.
Google Scholar

F. P. Ramsey, The Foundation of Mathematics, Proceedings of the London Mathematical Society, Ser. 2, Vol. 25, Part 5, (1926), pp. 338–384. DOI: 10.1112/plms/s2-25.1.338
Google Scholar

L. Wittgenstein, Tractatus Logico-Philosophicus, Routledge & Kegan Paul, London (1922). Originally published as Logisch-Philosophische Abhandlung, Annalen der Naturphilosophische XIV: 3/4 (1921).
Google Scholar

Downloads

Published

2018-10-30

How to Cite

Manzano, M., & Moreno, M. C. (2018). Identity, equality, nameability and completeness. Part II. Bulletin of the Section of Logic, 47(3), 141–158. https://doi.org/10.18778/0138-0680.47.3.01

Issue

Section

Research Article

Most read articles by the same author(s)