Hilbert Algebras with Hilbert-Galois Connections II
DOI:
https://doi.org/10.18778/0138-0680.2024.17Keywords:
Hilbert algebra, modal operators, Galois connection, canonical varieties, congruencesAbstract
Hilbert algebra with a Hilbert-Galois connection, or HilGC-algebra, is a triple \(\left(A,f,g\right)\) where \(A\) is a Hilbert algebra, and \(f\) and \(g\) are unary maps on \(A\) such that \(f(a)\leq b\) iff \(a\leq g(b)\), and \(g(a\rightarrow b)\leq g(a)\rightarrow g(b)\) for
all \(a,b\in A\). In this paper, we are going to prove that some varieties of HilGC-algebras are characterized by first-order conditions defined in the dual space and that these varieties are canonical. Additionally, we will also study and characterize the congruences of an HilGC-algebra through specific closed subsets of the dual space. This characterization will be applied to determine the simple algebras and subdirectly irreducible HilGC-algebras.
References
P. Blackburn, M. de Rijke, Y. Venema, Modal logic, Cambridge Tracts in Theoretical Computer Science, Cambridge University Press, Cambridge, UK (2014), DOI: https://doi.org/10.1017/CBO9781107050884
Google Scholar
DOI: https://doi.org/10.1017/CBO9781107050884
D. Busneag, A note on deductive systems of a Hilbert algebra, Kobe Journal of Mathematics, vol. 2 (1985), pp. 29–35.
Google Scholar
S. Celani, A note on homomorphisms of Hilbert algebras, International Journal of Mathematics and Mathematical Sciences, vol. 29(1) (2002), pp. 55–61, URL: https://www.emis.de/journals/HOA/IJMMS/Volume29_1/642735.pdf
Google Scholar
DOI: https://doi.org/10.1155/S0161171202011134
S. Celani, L. M. Cabrer, D. Montangie, Representation and duality for Hilbert algebras, Central European Journal of Mathematics, vol. 7(3) (2009), pp. 463–478, DOI: https://doi.org/10.2478/s11533-009-0032-5
Google Scholar
DOI: https://doi.org/10.2478/s11533-009-0032-5
S. Celani, D. Montangie, Hilbert Algebras with a necessity modal operator, Reports on Mathematical Logic, vol. 49 (2014), pp. 47–77, DOI: https://doi.org/10.4467/20842589RM.14.004.2274
Google Scholar
S. Celani, D. Montangie, Hilbert algebras with Hilbert–Galois connections, Studia Logica, vol. 111(1) (2023), pp. 113–138, DOI: https://doi.org/10.1007/s11225-022-10019-0
Google Scholar
DOI: https://doi.org/10.1007/s11225-022-10019-0
I. Chajda, R. Halas, J. Kühr, Semilattice structures, Heldermann, N, Lemgo, Germany (2007).
Google Scholar
A. Diego, Sur les algèbres de Hilbert, Hermann, Paris, Collection de Logique Mathematique, Sér. A, vol. 21 (1966).
Google Scholar
A. Monteiro, Sur les algebres de Heyting symétriques, Portugaliae Mathematica, vol. 39(1–4) (1980), pp. 1–237, URL: https://purl.pt/2926
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Funding data
-
Consejo Nacional de Investigaciones Científicas y Técnicas
Grant numbers PIP 11220200101301CO -
Agencia Nacional de Promoción Científica y Tecnológica
Grant numbers PICT2019-2019-00882