A Note on some Characterization of Distributive Lattices of Finite Length
DOI:
https://doi.org/10.18778/0138-0680.44.1.2.02Keywords:
distributive lattice, finite lengthAbstract
Using known facts we give a simple characterization of the distributivity of lattices of finite length.
References
Birkhoff G., Lattice theory, American Mathematical Society Colloquium Publications, Vol. XXV, Providence, Rhode Island 1967.
Google Scholar
Fried E., Grätzer G., Lakser H., Projective geometries as cover-preserving sublattices, Algebra Universalis, 27 (1990), pp. 270–278.
Google Scholar
DOI: https://doi.org/10.1007/BF01182460
Grätzer G., General Lattice Theory, Birkhäser, Basel, Stuttgart 1978.
Google Scholar
DOI: https://doi.org/10.1007/978-3-0348-7633-9
Herrmann Ch., S-verklebte Summen von Verba¨nden, Math. Z., 130 (1973), pp. 255–274.
Google Scholar
DOI: https://doi.org/10.1007/BF01246623
Kotas J., Wojtylak P., Finite Distributive Lattices as Sums of Boolean Algebras, Reports on Mathematical Logic, 29 (1995), pp. 35–40.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.