On Synonymy in Proof-Theoretic Semantics: The Case of
DOI:
https://doi.org/10.18778/0138-0680.2023.18Keywords:
bilateralism, bi-intuitionistic logicAbstract
We consider an approach to propositional synonymy in proof-theoretic semantics that is defined with respect to a bilateral G3-style sequent calculus
References
A. Almukdad, D. Nelson, Constructible falsity and inexact predicates, The Journal of Symbolic Logic, vol. 49 (1984), pp. 231–233, DOI: https://doi.org/10.2307/2274105
Google Scholar
DOI: https://doi.org/10.2307/2274105
S. Ayhan, Meaning and identity of proofs in a bilateralist setting: A two-sorted typed lambda-calculus for proofs and refutations, manuscript in preparation.
Google Scholar
S. Ayhan, Uniqueness of Logical Connectives in a Bilateralist Setting, [in:] M. Blicha, I. Sedlár (eds.), The Logica Yearbook 2020, College Publications, London (2021), pp. 1–16.
Google Scholar
S. Drobyshevich, A bilateral Hilbert-style investigation of 2-intuitionistic logic, Journal of Logic and Computation, vol. 29(5) (2019), pp. 665–692, DOI: https://doi.org/10.1093/logcom/exz010
Google Scholar
DOI: https://doi.org/10.1093/logcom/exz010
S. Drobyshevich, S. Odintsov, H. Wansing, Moisil’s modal logic and related systems, [in:] K. Bimbó (ed.), Essays in Honour of Michael Dunn, College Publications, London (2022), pp. 150–177.
Google Scholar
R. Goré, Dual Intuitionistic Logic Revisited, [in:] R. Dyckhoff (ed.), Automated Reasoning with Analytic Tableaux and Related Methods. TABLEAUX 2000, Springer-Verlag, Berlin (2000), pp. 252–267, DOI: https://doi.org/10.1007/10722086_21
Google Scholar
DOI: https://doi.org/10.1007/10722086_21
N. Kamide, H. Wansing, Proof theory of Nelson’s paraconsistent logic: A uniform perspective, Theoretical Computer Science, vol. 415 (2012), pp. 1–38, DOI: https://doi.org/10.1016/j.tcs.2011.11.001
Google Scholar
DOI: https://doi.org/10.1016/j.tcs.2011.11.001
N. Kamide, H. Wansing, Proof Theory of N4-related paraconsistent logics, College Publications, London (2015).
Google Scholar
T. Kowalski, H. Ono, Analytic cut and interpolation for bi-intuitionistic logic, The Review of Symbolic Logic, vol. 10(2) (2017), pp. 259–283, DOI: https://doi.org/10.1017/S175502031600040X
Google Scholar
DOI: https://doi.org/10.1017/S175502031600040X
S. Negri, J. von Plato, Structural proof theory, Cambridge University Press, Cambridge/New York (2001), DOI: https://doi.org/10.1017/CBO9780511527340
Google Scholar
DOI: https://doi.org/10.1017/CBO9780511527340
L. Postniece, Proof Theory and Proof Search of Bi-Intuitionistic and Tense Logic, Ph.D. thesis, The Australian National University, Canberra (2010).
Google Scholar
D. Prawitz, Natural Deduction: A Proof-Theoretical Study, Almqvist & Wiksell, Stockholm (1965).
Google Scholar
C. Rauszer, A formalization of the propositional calculus of H-B logic, Studia Logica, vol. 33(1) (1974), pp. 23–34, DOI: https://doi.org/10.1007/BF02120864
Google Scholar
DOI: https://doi.org/10.1007/BF02120864
F. von Kutschera, Ein verallgemeinerter Widerlegungsbegriff für Gentzenkalküle, Archiv für mathematische Logik und Grundlagenforschung, vol. 12 (1969), pp. 104–118, DOI: https://doi.org/10.1007/BF01969697
Google Scholar
DOI: https://doi.org/10.1007/BF01969697
H. Wansing, Falsification, natural deduction and bi-intuitionistic logic, Journal of Logic and Computation, vol. 26(1) (2016), pp. 425–450, DOI: https://doi.org/10.1093/logcom/ext035
Google Scholar
DOI: https://doi.org/10.1093/logcom/ext035
H. Wansing, On Split Negation, Strong Negation, Information, Falsification, and Verification, [in:] K. Bimbó (ed.), J. Michael Dunn on Information Based Logics. Outstanding Contributions to Logic, vol. 8, Springer (2016), pp. 161–189, DOI: https://doi.org/10.1007/978-3-319-29300-4_10
Google Scholar
DOI: https://doi.org/10.1007/978-3-319-29300-4_10
H. Wansing, A more general general proof theory, Journal of Applied Logic, vol. 25 (2017), pp. 23–46, DOI: https://doi.org/10.1016/j.jal.2017.01.002
Google Scholar
DOI: https://doi.org/10.1016/j.jal.2017.01.002
H. Wansing, A note on synonymy in proof-theoretic semantics, [in:] T. Piecha, K. Wehmeier (eds.), Peter Schroeder-Heister on Proof-Theoretic Semantics. Outstanding Contributions to Logic, Springer (forthcoming).
Google Scholar
H. Wansing, S. Ayhan, Logical multilateralism (2023), submitted.
Google Scholar
DOI: https://doi.org/10.1007/s10992-023-09720-9
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.