Anatomical variations of the flexor carpi ulnaris in the fetal period
DOI:
https://doi.org/10.18778/1898-6773.85.4.09Keywords:
fetal anatomy, forearm muscles, dissection, cadavers, flexor carpi ulnarisAbstract
Introduction: The Flexor Carpi Ulnaris (FCU) is a part of the palmar the forearm muscle group and one of the most important muscles for upper limb functioning - is responsible for flexion and adduction of the hand at the radio-carpal joint. There are clinically significant but rare anatomical variations of FCU. The variability of the FCU has not been described up to now, and no typology of the muscle based on its more variable terminal attachment has been created.
Aim of the study: Determination of FCU muscle typology based on available fetal material.
Material and methods: A total of 114 human fetuses (53 female, 61 male) between 117 and 197 days of fetal life were eligible for the study. Preparations were carried out using classical anatomical techniques based on a previously published procedure. Thanks to that significant anthropometric landmarks were visible for the gathering of metric measurements. Metric measurements were taken and statistically analysed using R-Project software.
Results: A new typology was created based on variable muscle insertions. Additionally, the presence of an atypically located, additional, separated muscle belly was described. A comparison of measurements of the left upper limb in relation to the right upper limb showed significant differences for forearm length to the anthropometric point of the stylion radiale, limb length, total FCU length and FCU length which means that the left limb is longer than the right limb. A comparison of FCU insertion types between left and right upper limb showed there’s no significant difference between counts of each type.
Conclusion: The FCU is a muscle that is easy to palpate and may therefore act as a topographical marker for healthcare professionals. Knowledge of its variability is not only of theoretical importance but also has clinical significance. The current publication demonstrates presence of variability in FCU terminal attachment. Certainly, this topic requires further research and continued work on a detailed understanding of forearm anatomy in the fetal period.
Downloads
References
al-Qattan MM, Duerksen F. 1992. A variant of flexor carpi ulnaris causing ulnar nerve compression. J Anat 180 (Pt 1):189–90.
View in Google Scholar
Aleman M, Scalco R, Malvick J, Grahn RA, True A, Bellone RR. 2022. Prevalence of Genetic Mutations in Horses With Muscle Disease From a Neuromuscular Disease Laboratory. J Equine Vet Sci 118:104129.
View in Google Scholar
DOI: https://doi.org/10.1016/j.jevs.2022.104129
Ang GG, Rozen WM, Vally F, Eizenberg N, Grinsell D. 2010. Anomalies of the flexor carpi ulnaris: clinical case report and cadaveric study. Clin Anat 23(4):427–30.
View in Google Scholar
DOI: https://doi.org/10.1002/ca.20952
Ata AM, Kara M, Aydin G, Kaymak B, Gürçay E, Özçakar L. 2018. Ultrasound Imaging for Muscle Variations: Digastric Flexor Carpi Ulnaris, Gastrocnemius Tertius, and Supernumerary Fibularis Longus in an Asymptomatic Family. Am J Phys Med Rehabil 97(11):e107–09.
View in Google Scholar
DOI: https://doi.org/10.1097/PHM.0000000000000945
Baumert P, G-REX Consortium, Stewart CE, Lake MJ, Drust B, Erskine RM. Variations of collagen-encoding genes are associated with exercise-induced muscle damage. 2018. Physiol Genomics. Sep 1;50(9):691–693.
View in Google Scholar
DOI: https://doi.org/10.1152/physiolgenomics.00145.2017
Bhardwaj P, Bhandari L, Sabapathy SR. 2013. Supernumerary flexor carpi ulnaris–case report and review. Hand Surg 18(3):393–97.
View in Google Scholar
DOI: https://doi.org/10.1142/S0218810413720222
Bobzin L, Roberts RR, Chen HJ, Crump JG, Merrill AE. 2021. Development and maintenance of tendons and ligaments. Development 148(8):dev186916.
View in Google Scholar
DOI: https://doi.org/10.1242/dev.186916
Budoff JE, Kraushaar BS, Ayala G. 2005. Flexor carpi ulnaris tendinopathy. J Hand Surg Am 30(1):125–29.
View in Google Scholar
DOI: https://doi.org/10.1016/j.jhsa.2004.07.018
Capdarest-Arest N, Gonzalez JP, Türker T. 2014. Hypotheses for ongoing evolution of muscles of the upper extremity. Med Hypotheses 82(4):452–56.
View in Google Scholar
DOI: https://doi.org/10.1016/j.mehy.2014.01.021
Conrad DF, Keebler JE, DePristo MA, Lindsay SJ, Zhang Y, Casals F, et al. 2011. 1000 Genomes Project. Variation in genome-wide mutation rates within and between human families. Nat Genet Jun 12;43(7):712–4.
View in Google Scholar
DOI: https://doi.org/10.1038/ng.862
Dudek K, Nowakowska-Kotas M, Kędzia A. 2018. Mathematical models of human cerebellar development in the fetal period. J Anat 232(4):596–603.
View in Google Scholar
DOI: https://doi.org/10.1111/joa.12767
Esplugas M, Garcia-Elias M, Lluch A, Llusá Pérez M. 2016. Role of muscles in the stabilization of ligament-deficient wrists. J Hand Ther 9(2):166–174.
View in Google Scholar
DOI: https://doi.org/10.1016/j.jht.2016.03.009
Fridén J, Lovering RM, Lieber RL. 2004. Fiber length variability within the flexor carpi ulnaris and flexor carpi radialis muscles: implications for surgical tendon transfer. J Hand Surg Am 29(5):909–14.
View in Google Scholar
DOI: https://doi.org/10.1016/j.jhsa.2004.04.028
Ghosh SK. 2017. Paying respect to human cadavers: We owe this to the first teacher in anatomy. Ann Anat 211:129–34.
View in Google Scholar
DOI: https://doi.org/10.1016/j.aanat.2017.02.004
Giuliani Piccari Scarpa G, Marchini M, Nicoletti P. 1977. Osservazioni sullo sviluppo dell’articolazione scapolo-omerale nell’uomo, con particolare riferimento ai suoi rapporti con il tendine del capo lungo del muscolo bicipite del braccio. Arch Ital Anat Embriol 82(1):85–98.
View in Google Scholar
Grechenig W, Clement H, Egner S, Tesch NP, Weiglein A, Peicha G. 2000. Musculo-tendinous junction of the flexor carpi ulnaris muscle. An anatomical study. Surg Radiol Anat 22(5–6):255–60.
View in Google Scholar
DOI: https://doi.org/10.1007/s00276-000-0255-4
Guéro S. Developmental biology of the upper limb. 2018. Hand Surg Rehabil 37(5):265–74.
View in Google Scholar
DOI: https://doi.org/10.1016/j.hansur.2018.03.007
Gworys B, Domagala Z. 2003. The typology of the human fetal lanugo on the thorax. Ann Anat 185(4):383–86.
View in Google Scholar
DOI: https://doi.org/10.1016/S0940-9602(03)80066-3
Iwanaga J, Singh V, Takeda S, Ogeng’o J, Kim HJ, Moryś J et al. 2022. Standardized statement for the ethical use of human cadaveric tissues in anatomy research papers: Recommendations from Anatomical Journal Editors-in-Chief. Clin Anat 35(4):526–528.
View in Google Scholar
DOI: https://doi.org/10.1002/ca.23849
Karykowska A, Domagała ZA, Gworys B. 2022. Musculus peroneus longus in foetal period. Folia Morphol (Warsz) 81(1):124–33.
View in Google Scholar
DOI: https://doi.org/10.5603/FM.a2020.0129
Karykowska A, Domagala ZA, Gworys B. 2022. Topography of the common fibular nerve terminal division in human foetuses. Folia Morphol (Warsz) 81(1):37–43.
View in Google Scholar
DOI: https://doi.org/10.5603/FM.a2020.0103
Karykowska A, Rohan-Fugiel A, Mączka G, Grzelak J, Gworys B, Tarkowski V, Domagała Z. 2021. Topography of muscular branches of the superficial fibular nerve based on anatomical preparation of human foetuses. Ann Anat 237:151728.
View in Google Scholar
DOI: https://doi.org/10.1016/j.aanat.2021.151728
Kędzia A, Dudek K, Ziajkiewicz M, Wolanczyk M, Seredyn A, Derkowski W, Domagala ZA. 2022. The morphometrical and topographical evaluation of the superior gluteal nerve in the prenatal period. PLoS One 17(8):e0273397.
View in Google Scholar
DOI: https://doi.org/10.1371/journal.pone.0273397
Králík M, Ingrová P, Kozieł S, Hupková A, Klíma O. 2017. Overall trends vs. individual trajectories in the second-to-fourth digit (2D:4D) and metacarpal (2M:4M) ratios during puberty and adolescence. Am J Phys Anthropol Apr;162(4):641–656.
View in Google Scholar
DOI: https://doi.org/10.1002/ajpa.23153
Krämer DK, Ahlsén M, Norrbom J, Jansson E, Hjeltnes N, Gustafsson T, et al. 2006. Human skeletal muscle fibre type variations correlate with PPAR alpha, PPAR delta and PGC-1 alpha mRNA. Acta Physiol (Oxf) 188(3-4):207–16.
View in Google Scholar
DOI: https://doi.org/10.1111/j.1748-1716.2006.01620.x
Kreulen M, Smeulders MJ, Hage JJ. 2004. Restored flexor carpi ulnaris function after mere tenotomy explains the recurrence of spastic wrist deformity. Clin Biomech (Bristol, Avon) 19(4):429–32.
View in Google Scholar
DOI: https://doi.org/10.1016/j.clinbiomech.2003.12.006
Krzyżak M, Maślach D, Piotrowska K, Charkiweicz AE, Szpak A, Karczewski J. 2014. Perinatal mortality in urban and rural areas in Poland in 2002-2012. Przegl Epidemiol 68(4):675–79.
View in Google Scholar
Kunc V, Stulpa M, Feigl G, Kachlik D. 2019. Accessory flexor carpi ulnaris muscle with associated anterior interosseous artery variation: case report with the definition of a new type and review of concomitant variants. Surg Radiol Anat 41(11):1315–18.
View in Google Scholar
DOI: https://doi.org/10.1007/s00276-019-02261-4
Loth E. 1912. Beiträge zur Anthropologie der Negerweichteile (Muskelsystem). Strecker & Schröder.
View in Google Scholar
Marzke MW. 1997. Precision grips, hand morphology, and tools. Am J Phys Anthropol 102(1):91–110.
View in Google Scholar
DOI: https://doi.org/10.1002/(SICI)1096-8644(199701)102:1<91::AID-AJPA8>3.0.CO;2-G
McCumber TL, Latacha KS, Lomneth CS. 2021. The state of anatomical donation programs amidst the SARS-CoV-2 (Covid-19) pandemic. Clin Anat 34(6):961–65.
View in Google Scholar
DOI: https://doi.org/10.1002/ca.23760
Mizia E, Pekala PA, Skinningsrud B, Rutowicz B, Piekos P, Baginski A, Tomaszewski KA. 2021. The anatomical landmarks effective in the localisation of the median nerve during orthopaedic procedures. Folia Morphol (Warsz) 80(2):248–54.
View in Google Scholar
DOI: https://doi.org/10.5603/FM.a2020.0049
Pelletier F, Coltman DW. 2018. Will human influences on evolutionary dynamics in the wild pervade the Anthropocene? BMC Biol. Jan 15;16(1):7.
View in Google Scholar
DOI: https://doi.org/10.1186/s12915-017-0476-1
Pressney I, Upadhyay B, Dewlett S, Khoo M, Fotiadou A, Saifuddin A. 2020. Accessory flexor carpi ulnaris: case report and review of the literature. BJR Case Rep 6(3):20200010.
View in Google Scholar
DOI: https://doi.org/10.1259/bjrcr.20200010
Rohan A, Domagała Z, Abu Faraj S, Korykowska A, Klekowski J, Pospiech N, Wozniak S, Gworys B. 2019. Branching patterns of the foetal popliteal artery. Folia Morphol (Warsz) 78(1):71–78.
View in Google Scholar
Saniotis A, Henneberg M, Mohammadi K. 2021. Genetic load and biological changes to extant humans. J Biosoc Sci Jul;53(4):639–642.
View in Google Scholar
DOI: https://doi.org/10.1017/S0021932020000413
Skinner MM, Stephens NB, Tsegai ZJ, Foote AC, Nguyen NH, Gross T, Pahr DH, Hublin JJ, Kivell TL. 2015. Human evolution. Human-like hand use in Australopithecus africanus. Science 347(6220):395–99.
View in Google Scholar
DOI: https://doi.org/10.1126/science.1261735
Suchanecka M, Siwek K, Ciach J, Eicke K, Tarkowski V. 2022. Typology of flexor carpi radialis muscle in human fetuses. Folia Med Cracov 62(1):5–17.
View in Google Scholar
Troszyński M, Niemiec T, Wilczyńska A. 2009. Ocena funkcjonowania trójstopniowej selektywnej opieki perinatalnej na podstawie analizy umieralności okołoporodowej wczesnej i cieć cesarskich w Polsce w 2008 roku [Assessment of three-level selective perinatal care based on the analysis of early perinatal death rates and cesarean sections in Poland in 2008]. Ginekol Pol 80(9):670–677.
View in Google Scholar
Wingate Todd T. 1931. Anthropologie des parties molles. E LOTH.. Pages vii + 539. Masson et Cie. The Anatomical Record 51(2):219–22.
View in Google Scholar
DOI: https://doi.org/10.1002/ar.1090510209
Wiśniewski M, Baumgart M, Grzonkowska M, Szpinda M, Pawlak-Osińska K. 2019. Quantitative anatomy of the ulna’s shaft primary ossification center in the human fetus. Surg Radiol Anat 41(4):431–39.
View in Google Scholar
DOI: https://doi.org/10.1007/s00276-018-2121-2
Wood J. 1866. Variations in Human Myology Observed during the Winter Session of 1865-66 at King’s College, London. Proc R Soc Lond 15:229–244.
View in Google Scholar
DOI: https://doi.org/10.1098/rspl.1866.0054
Wozniak S, Pytrus T, Kobierzycki C, Grabowski K, Paulsen F. 2019. The large intestine from fetal period to adulthood and its impact on the course of colonoscopy. Ann Anat 224:17–22.
View in Google Scholar
DOI: https://doi.org/10.1016/j.aanat.2019.02.004
Yamamoto R, Izumida M, Sakuraya T, Emura K, Arakawa T. 2021. The ulnar nerve is surrounded by the tendon expansion of the flexor carpi ulnaris muscle at the wrist: an anatomical study of Guyon’s canal. Anat Sci Int 96(3):422–26.
View in Google Scholar
DOI: https://doi.org/10.1007/s12565-021-00607-w
You W, Henneberg R, Henneberg M. 2022. Healthcare services relaxing natural selection may contribute to increase of dementia incidence. Sci Rep 25;12(1):8873.
View in Google Scholar
DOI: https://doi.org/10.1038/s41598-022-12678-4
Yuan Z, Sunduimijid B, Xiang R, Behrendt R, Knight MI, Mason BA, Reich CM, Prowse-Wilkins C, Vander Jagt ChJ, Chamberlain AJ, MacLeod IM, Li F, Yue X, Daetwyler HD. 2021. Expression quantitative trait loci in sheep liver and muscle contribute to variations in meat traits. Genet Sel Evol 18;53(1):8.
View in Google Scholar
DOI: https://doi.org/10.1186/s12711-021-00602-9
Ziajkiewicz M, Kędzia A, Dudek K. 2010. Flexor carpi ulnaris (FCU) muscle (m. flexor carpi ulnaris) in foetal period. Arch Perinat Med 16(4):218–24.
View in Google Scholar
Ziółkowski M, Trzaska M, Kurlej W, Porwolik K, Porwolik M. 1994. Relationship between the intervertebral foramina and the spinal nerves at the level of C4-T2 of the human fetal vertebral column. Folia Morphol (Warsz) 53(3):197–203.
View in Google Scholar
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Funding data
-
Ministerstwo Edukacji i Nauki
Grant numbers SUBZ.A351.22.038