Chemical signals and reconstruction of life strategies from ancient human bones and teeth – problems and perspectives

Authors

  • Krzysztof Szostek Department of Anthropology, Institute of Zoology, Jagiellonian University, Ingardena 6, 30-060 Kraków, Poland

DOI:

https://doi.org/10.2478/v10044-008-0013-5

Keywords:

bone chemistry, diagenesis, stable isotopes, diet, migration

Abstract

Chemical analyses of historical and prehistoric bone material provide us with a complex body of knowledge in bioarcheological studies. These can be used for reconstructing diet, migration, climate changes and the weaning process. The analysis of enamel, dentin and bones allows researchers to gather data on life strategies of an individual by retrospectively tracing his ontogenetic phases. This is made possible through knowledge of the mineralization periods of permanent and deciduous teeth while simultaneously taking account of differences between enamel, dentin and bone remodelling rates, dependent on the age of the individual. Yet, the large interpretative potential of isotope analyses of bone material is severely limited by diagenesis. The accurate recording of diagenetic changes in historical human bone material is a current main trend in bioarcheological research. Today, a highly specialised set of research tools is used for verifying whether bones unearthed at archeological sites are suitable for isotope tests. Isotope determinations are pivotal in this research as reconstructions of paleodiets or migrations of our ancestors can be based only on material that has been maintained intact in sufficient proportions post mortem.

Downloads

Download data is not yet available.

References

Ambrose S. H., 1990, Preparation and characterization of bone and tooth collagen for isotopic analysis, J. Archaeol. Sci., 17, 431-51
View in Google Scholar

Ambrose S. H., 1990, Preparation and characterization of bone and tooth collagen for isotopic analysis, J. Archaeol. Sci., 17, 431-51
View in Google Scholar

Ambrose S. H., J. Buikstra, H. W. Krueger, 2003 Status and gender differences in diet at Mound 72, Cahokia, revealed by isotopic analysis of bone, J. Anthropol. Archaeol., 22, 217-26
View in Google Scholar

Ambrose S. H., L. Norr, 1992, On stable isotopic data and prehistoric subsistence in the Soconusco region, Curr. Anthropol., 33, 401-4
View in Google Scholar

Ambrose S. H., L. Norr, 1993, Experimental evidence for the relationship of the carbon isotope ratios of whole diet and dietary protein to those of bone collagen and carbonate, [in:] Prehistoric Human Bone: Archaeology at the Molecular Level, J. B. Lambert, G. Grupe (eds.), Springer-Verlag, Berlin, pp. 1-37
View in Google Scholar

Ballasse M., 2003, Potential biases in sampling design and interpretation of intra-tooth isotope analysis, Int. J. Osteoarchaeol., 13, 3-10
View in Google Scholar

Ballasse M., H. Bocherens, A. Mariotti, 1999, Intra-bone variability of collagen and apatite isotopic composition used as evidence of a change of diet, J. Archaeol. Sci., 26, 593-98
View in Google Scholar

Ballase M., H. Bocherens, A. Mariotti, S. H. Ambrose, 2001, Detection of dietary changes by intra-tooth carbon and nitrogen isotopic analysis: An experimental study of dentine collagen of cattle (Boss taurus), J. Archaeol. Sci., 28, 235-45
View in Google Scholar

Bentley R. A., T. D. Price, E. Stephan, 2004, Determining the local 87Sr/86Sr range for archaeological skeletons: A case study from Neolithic Europe, J. Archaeol. Sci., 31, 365-75
View in Google Scholar

Bisel S. C., 1988, Nutrition in first century Herculaneum, Anthropologie (Brno), 26, 61-66
View in Google Scholar

Bocherens H., 1997, Isotopic biogeochemistry as a marker of Neandertal diet, Anthr. Anz., 55, 101-20
View in Google Scholar

Bryant J. D., B. Luz, P. N. Froelich, 1994, Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental paleoclimate, Paleogeogr. Paleoclimat. Paleoecol., 107, 303-16
View in Google Scholar

Budd P., J. Montgomery, B. Barreiro, R. G. Thomas, 2000, Differential diagenesis of strontium in archaeological human tissues, Appl. Geochem., 15, 687-94
View in Google Scholar

Child A. M., 1995, Towards and understanding of the microbial decomposition of archaeological bone in the burial environment, J. Archaeol. Sci., 22, 165-74
View in Google Scholar

DeNiro M. J., 1985, Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to paleodietary reconstruction, Nature, 317, 806-9
View in Google Scholar

Dolphin A. E., A. H. Goodman, 2009, Maternal diets, nutritional status, and znic in contemporary Mexican infants' teeth: Implications for reconstructing paleodiets, Am. J. Phys. Anthropol., 140, 399-409
View in Google Scholar

Dubois S., J. L. Blin, B. Bouchaud, S. Lefebre, 2007, Isotope tropic-step fractionation of suspension-feeding species: Implications for food partitioning in coastal ecosystems, J. Exp. Mar. Biol. Ecol., 351, 121-28
View in Google Scholar

Dupras T. L., H. P. Schwarcz, 2001, Strangers in a strange land: Stable isotope evidence for human migration in the Dakhleh Oasis, Egypt, J. Archaeol. Sci., 28, 1199-208
View in Google Scholar

Edward J. B., R. A. Benfer, 1993, The effect of diagenesis on the Paloma skeletal material, [in:] Investigations of Ancient Human Tissue: Chemical Analyses in Anthropology, M. K. Sandford (ed.), Gordon and Breach, Landorne PA, pp. 183-268
View in Google Scholar

Elliot J. C., 1994, Structure and chemistry of the apatites and other calcium orthophosphates, Amsterdam, Elsevier
View in Google Scholar

Evans J., N. Stoodley, C. Chenery, 2006, A strontium and oxygen isotope assessment of a possible fourth century immigrant population in a Hampshire cemetery, southern England, J. Archaeol. Sci., 33, 265-72
View in Google Scholar

Ezzo J. A., 1992, A test of diet versus diagenesis at Ventana cave, Arizona, J. Archaeol. Sci., 19, 23-37
View in Google Scholar

Ezzo J. A., C. M. Johnson, T. D. Price, 1997, Analytical perspectives of prehistoric migration: a case study from East Central Arizona, J. Archaeol. Sci., 24, 447-66
View in Google Scholar

Farnum, J. F., M. D. Glascock, M. K. Sandford, S. Geritsen, 1995, Trace elements in ancient human bone and associated soil using NAA, J. Radioanal. Nucl. Chem., 196, 267-74
View in Google Scholar

Fisher A., J. Olsen, M. Richards, J. Heinemeier, A.E Sveinbjornsdottir, P. Bennike, 2007, Coast-inland mobility and diet in the Danish Mesolithic and Neolithic: Evidence from stable isotope values of humans and dogs, J. Archaeol. Sci., 34, 2125-50
View in Google Scholar

Fuller B. T., J. L. Fuller, D. A. Harris, R. E. M. Hedges, 2006a, Detection of breastfeeding and weaning in modern human infants with carbon and nitrogen stable isotope ratios, Am. J. Phys. Anthropol., 129, 279-93
View in Google Scholar

Fuller B. T., T. I. Molleson, D. A. Harris, L. T. Gilmour, R. E. M. Hedges, 2006b, Isotopic evidence for breastfeeding and possible adult dietary differences from Late/Sub-Roman Britain, Am. J. Phys. Anthropol., 129, 45-54
View in Google Scholar

Gawlik D., D. Behne, P. Bratter, W. Gatschke, H. Gessner, D. Kraft, 1982, The suitability of the iliac crest biopsy in the element analysis of bone and marrow, J. Clinic. Chem. Clinic. Biochem., 20, 499-507
View in Google Scholar

Gibson, I. R., W. Bonfield, 2002, Novel synthesis and characterization of an AB-type carbonate - substituted hydroxyapatite, J. Biomed. Mater. Res., 59, 697-708
View in Google Scholar

Grupe G., U. Dreses-Werringloer, F. Parsche, 1993, Initial stages of bone decomposition: Causes and consequences, [in:] Prehistoric Human Bone: Archaeology at the Molecular Level, J. B. Lambert, G. Grupe (eds.), Springer- Verlag, Berlin, pp. 257-74
View in Google Scholar

Grupe G., H. Pipenbrink, 1988, Trace element concentrations in excavated bones by microorganisms, [in:] Trace Elements in Environmental History, G. Grupe, B. Herrmann (eds.), Springer-Verlag, Berlin, pp. 103-12
View in Google Scholar

Grupe G., H. Piepenbrink, M. J. Schoeninger, 1989, Note on microbial influence on stable carbon and nitrogen isotopes in bone, Appl. Geochem., 4, 299
View in Google Scholar

Grupe G., T. D. Price, P. Schroeter, F. Sollner, C. M. Johnson, B. L. Beard, 1997, Mobility of Bell Baker people revealed by strontium isotope ratios of tooth and bone: A study of southern Bavarian skeletal remains, Appl. Geochem., 12, 517-25
View in Google Scholar

Hancock R. G., M. D. Gynpas, K. P. H. Pritzker, 1989, The abuse of bone analyses for archaeological dietary studies, Archaeometry, 31, 169-80
View in Google Scholar

Hart J. P., W. A. Lovis, J. K. Schulenberg, G. R. Urquhart, 2007, Paleodietary implication from stable carbon isotope analysis of experimental cooking residues, J. Archaeol. Sci., 34, 804-13
View in Google Scholar

Hedges R. E. M., L. M. Reynard, 2007, Nitrogen isotopes and the trophic level of humans in archaeology, J. Archaeol. Sci., 34, 1240-51
View in Google Scholar

Honch N. V., T. F. G. Higham, J. Chapman, B. Gaydarska, R. E. M. Hedges, 2006, A paleodietary investigation of carbon (13C/12C) and nitrogen (15N/14N) in human and faunal bones from the Cooper Age cemeteries of Varna I and Durankulak, Bulgaria, J. Archaeol. Sci., 33, 1493-504
View in Google Scholar

Hoogewerff J., W. Papeych, M. Kralik, M. Berner, P. Vroon, et al., 2001, The last domicile of Iceman from Hauslabjoch: A geochemical approach using Sr, C and O isotopes and trace element signatures, J. Archaeol. Sci., 28, 983-89
View in Google Scholar

Hoppe K. A., P. L. Koch, T. T. Furutani, 2003, Assessing the preservation of biogenic strontium in fossil bones and tooth enamel, Int. J. Osteoarchaeol., 13, 20-28
View in Google Scholar

Humphrey L. T., M. C. Dean, T. E. Jeffries, M. Penn, 2008, Unlocking evidence of early diet from tooth enamel, Proc. Natl. Acad. Sci., 105, 6834-39
View in Google Scholar

Hurt R. W., T.E Davis, 1981, Strontium isotopes as traces of airborne fly ash from coal-fired power plants, Environ. Geol., 3, 363-97
View in Google Scholar

Iacumin P., H. Bocherens, L. Chaix, A. Marioth, 1998, Stable Carbon and Nitrogen Isotopes as Dietary Indicators of ancient Nubian populations (Northern Sudan), J. Archaeol. Sci., 25, 293-301
View in Google Scholar

Iacumin P., H. Bocherens, A. D. Huertas, A. Mariotti, A. Longinelli, 1997, A stable isotope study of fossil mammal remain from the Paglicci cave, Southern Italy. N and C as paleoenvironmental indicators, Earth. Planet. Sci. Lett., 148, 349-57
View in Google Scholar

Iacumin P., H. Bocherens, A. Mariotti, A. Longinelli, 1996, An isotopic paleoenvironmental study of human skeletal remains from Nile Valley, Paleogeogr. Paleoclimat. Paleoecol., 126, 15-30
View in Google Scholar

Iacumin P., V. Nikolaev, M. Ramigni, 2000, C and N isotope measurements on Eurasian fossil mammals, 40 000 to 10 000 years BP: Herbivore physiologies and paleoenvironmental reconstruction, Paleogeogr. Paleoclimat. Paleoecol., 163, 22-47
View in Google Scholar

Jørkov M. L., J. Heinemeier, N. Lynnerup, 2007, Evaluating bone collagen extraction methods for stable isotope analysis in dietary, J. Archaeol. Sci., 34: 1824-29
View in Google Scholar

Katzenberg, M. A., 2000, Stable isotope analysis: A tool for studying past diet, demography, and life history, [in] Biological Anthropology of the Human Skeleton, M. A. Katzenberg, S. R. Saunders (eds.), Wiley-Liss, New York, pp. 305-28
View in Google Scholar

Katzenberg, M. A., A. Weber, 1999, Stable isotope ecology and paleodiet in the Lake Baikal region of Siberia, J. Archaeol. Sci., 26: 651-59
View in Google Scholar

Knobbe N., J. Vogl, W. Pritzkow, U. Panne, H. Fry, et al., 2006, C and N stable isotope variation in urine and milk of cattle depending on the diet, Anal. Bioanal. Chem., 386, 104-8
View in Google Scholar

Knudson K. J., T. D. Price, 2007, Utility of multiple chemical techniques in archaeological residential mobility studies: Case studies from Twinaku- and Chiribaya-Affiliated sites in the Andes, Am. J. Phys. Anthropol., 132, 25-39
View in Google Scholar

Koch P. L., N. Tuross, M. L. Fogel, 1997, The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite, J. Archaeol. Sci., 24, 417-29
View in Google Scholar

Kohn M. J., M. J. Schoeninger, W. W. Baker, 1999, Altered states: Effects of diagenesis on fossil tooth chemistry, Geochim. Cosmochim. Acta, 63, 2737-47
View in Google Scholar

Krueger H. W., 1991, Exchange of carbon with biological apatite, J. Archaeol. Sci., 18, 355-61
View in Google Scholar

Krueger H. W., C. H. Sullivan, 1984, Models for carbon isotope fractionation between diet and bone, [in:] Stable Isotopes in Nutrition, J. E. Turnlund, P. E. Johnson (eds.), American Chemical Society, Symposium Series, 258, Washington D. C., pp. 205-22
View in Google Scholar

Le Geros R. Z., 1991, Calcium phosphates in oral biology and medicine, Karger, Paris
View in Google Scholar

Lee-Thorp J., M. Sponheimer, 2003, Three case studies used to reassess the reliability of fossil bone and enamel isotope signals for paleodietary studies, J. Anthropol. Archaeol., 22, 208-16
View in Google Scholar

Lee-Thorp J., M. Sponheimer, 2006, Contributions of biogeochemistry to understanding hominin dietary ecology, Year. Phys. Anthropol., 49, 131-48
View in Google Scholar

Lee-Thorp J. A., M. Sponheimer, 2007, Contribution of stable light isotopes to paleoenvironmental reconstruction, [in:] Handbook of paleoanthropology, W. Henke, I. Tattersall (eds.), Springer, Berlin, pp. 289-310
View in Google Scholar

Lee-Thorp J. A., M. Sponheimmer, N. J. van der Merwe, 2003, What do stable isotopes tell us about hominid dietary and ecological niches in the Pliocene, Int. J. Osteoarchaeol., 13, 104-13
View in Google Scholar

Lee-Thorp J. A., N. J. van der Merwe, 1987, Carbon isotope analysis of fossil bone apatite, S. Afr. J. Sci., 83, 712-15
View in Google Scholar

Lee-Thorp J. A., N. J. van der Merwe, 1991, Aspects of the chemistry of modern and fossil biological apatite, J. Archaeol. Sci., 18, 343-54
View in Google Scholar

Lee-Thorp J. A., N. J. van der Merwe, C. K. Brain, 1989, Isotopic evidence for dietary differences between two extinct baboon species from Swartkrans, South Africa.J. Hum. Evol., 18, 183-90
View in Google Scholar

Luz B., A. B. Cormie, H. P. Schwarcz, 1990, Oxygen isotope variations in phosphate of deer bones, Geochim. Cosmochim. Acta, 54, 1723-28
View in Google Scholar

Luz B., Y. Kolodny, M. Horowitz, 1984, Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water, Geochim. Cosmochim. Acta, 48, 1689-93
View in Google Scholar

Mays S., 1998, The archaeology of human bones, Routledge, London
View in Google Scholar

McGlynn G., 2007, Using 13C-, 15N- and 18O stable isotope analysis of human bone tissue to identify transhumance, high altitude habitation and reconstruct palaeodiet for the early medieval Alpine population at Volders, Austria, PhD dissertation, Ludwig-Maximilians-Universität, München
View in Google Scholar

Minigawa M., E. Wada, 1984, Stepwise enrichment of 15 N along food chains: Further evidence and the relation between 15 N and animal age, Geochim. Cosmochim. Acta, 48, 1135-40
View in Google Scholar

Molleson T., 1987, Trace elements in human teeth, [in:] Trace Elements in Environmental History, G. Grupe, B. Herrmann (eds.), Springer-Verlag, Berlin, pp. 67-83
View in Google Scholar

Munro, L. E., F. J. Longstaffe, C. D. White, 2007, Burning and boiling of modern deer bone: effects on the oxygen isotope composition of bioapatite phosphate, Palaeogeogr. Palaeoclimat. Palaeoecol., 249, 90-102
View in Google Scholar

Munro, L. E., F. J. Longstaffe, C. D. White, 2008, Effects of heating on the carbon and oxygen-isotope compositions of structural carbonate in bioapatite from modern deer bone, Palaeogeogr. Palaeoclimat. Palaeoecol., 266, 142-50
View in Google Scholar

Müller W., 2005, Isotopic tracing in Archaeometry, Research School of Earth Sciences, Australian National University, Canberra, ACT 0200
View in Google Scholar

Niedźwiecki T., J. J. Kuryszko, 2007, Biologia kości, PWN, Warszawa
View in Google Scholar

Ostrom P. G., M. Colunga-Garcia, S. H. Gage, 1997, Establishing pathways of energy flow for insect predators using stable isotope ratios: Field and laboratory evidence, Oecologia, 109, 108-13
View in Google Scholar

Ovalle C., S. Urquiaga, A. Del Pozo, E. Zegal, S. Arredondo, 2006, Nitrogen fixation in six forage legumes in mediterranean central Chile, Acta Agric. Scand., 56, 277-83
View in Google Scholar

Pearsal D. M., 2008, Paleoethnobotany, A Handbook of Procedures, MPG Books, Cornwall
View in Google Scholar

Pearson J. A., H. Buitenhuis, R. E. M. Hedges, L. Martin, N. Russel, K. C. Twiss, 2007, New light on early caprine herding strategies from isotope analysis: A case study from Neolithic Anatolia, J. Archaeol. Sci., 34, 2170-79
View in Google Scholar

Peters C. R., J. C. Vogel, 2005, Africa's wild C4 plant foods and possible early hominid diets, J. Hum. Evol., 48, 219-36
View in Google Scholar

Price T. D., R. A. Bentley, J. Lunig, D. Gronenborn, J. Wahl, 2001, Prehistoric human migration in the Linearbandkeramik of Central Europe, Antiquity, 75, 593-603
View in Google Scholar

Price T. D., G. Grupe, P. Schroter, 1994a, Reconstruction of migration patterns in the Bell Baker period by stable strontium isotope analysis, Appl. Geochem., 9, 413-17
View in Google Scholar

Price T. D., G. Grupe, P. Schroeter, 1998, Migration in the Bell Baker period of Central Europe, Antiquity, 72, 405-11
View in Google Scholar

Price T. D., C. M. Johnson, J. A. Ezzo, J. Ericson, J. H. Burton, 1994b, Residential mobility in the prehistoric southwest US: A preliminary study using strontium isotope analysis, J. Archaeol. Sci., 21, 315-30
View in Google Scholar

Price T. D., C. Knipper, G. Grupe, V. Smrcka, 2004, Strontium isotopes and prehistoric human migration: The Bell Beaker period in Central Europe, Europ. J. Archaeol., 7, 9-40
View in Google Scholar

Price T. D., L. Manzanilla, W. D. Middleton, 2000, Immigration and the ancient city of Teotihuan in Mexico: A study using strontium isotope ratios in human bone and teeth, J. Archaeol. Sci., 27, 903-13
View in Google Scholar

Price T. D., J. Wahl, R. A. Bentley, 2006, Isotopic evidence for mobility and group organisation among neolithic farmers at Talheim, Germany, 500 BC, Europ. J. Archaeol., 9, 259-84
View in Google Scholar

Prowse T. L., H. P. Schwarcz, P. Garnsey, M. Knyf, R. Macchiarelli, L. Bondioli, 2007, Isotopic evidence for age-related immigration to Imperial Rome, Am. J. Phys. Anthropol., 132, 510-19
View in Google Scholar

Prowse T., H. P. Schwarcz, S. Sauners, R. Macchiarelli, L. Bondioli, 2004, Isotopic paleodiet studies of skeletons from the Imperial Roman-age cemetery of Isola Scara, Rome, Italy, J. Archaeol. Sci., 31, 259-72
View in Google Scholar

Richards M. P., R. E. M. Hedges, 1999, Stable isotope evidence for similarities in the types of marine food used by Late Mesolithic humans at sites along the Atlantic coast of Europe, J. Archaeol. Sci., 26, 717-22
View in Google Scholar

Riehl S., R. Bryson, K. Pustovoytov, 2007, Changing growing conditions for crops during the Near Eastern Bronze Age (3000-1200 BC): the stable carbon isotope evidence, J. Archaeol. Sci., 1, 1-12
View in Google Scholar

Robinson J. T., 1954, Prehominid dentition and hominid evolution, Evolution, 8, 324-34
View in Google Scholar

Safont S., A. Malgosa, M.E, Subira, J. Gibert, 1998, Can trace elements in fossils provide information about paleodiet, Int. J. Osteoarchaeol., 8, 23-37
View in Google Scholar

Sanchez-Quevedo M. C., G. Ceballos-Salobrena, I. A. Rodriguez, J. M. Garcia, A. Campos, 2001, Quantitative X-ray microanalytical and histochemical patterns of calcium and phosphorus in enamel in human amelogenesis imperfecta, Int. J. Dev. Biol., 45, 115-17
View in Google Scholar

Schoeninger M. J., M. J. DeNiro, 1984, Nitrogen and carbon isotopic composition of bone collagen from marine and terrestrial animals, Geochim. Cosmochim. Acta, 48, 625-39
View in Google Scholar

Schoeninger M. J., K. Moore, 1992, Bone stable isotope studies in archaeology, J. World. Prehistory, 6, 247-95
View in Google Scholar

Schurr M. R., R. G. Hayes, D. C. Cook, 2008, Thermally induced changes in the stable carbon and nitrogen isotope ratios of charred bones, [in] The Analysis of Burned Human Remains, C. W. Schmidt, S. A. Symes (eds.), Academic Press, London, pp. 95-108
View in Google Scholar

Schwarcz J. P., L. Gibbs, M. Knyf, 1991, Oxygen isotope analysis as an indicator of place of origin, [in:] An Investigation of a Cemetery from the War of 1812, S. Pfeiffer, R. F. Williamson (eds.), Dundrun Press, Toronto, pp. 263-68
View in Google Scholar

Schweissing M. M., G. Grupe, 2003, Stable strontium isotopes in human teeth and bone: A key to migration events of the late Roman period in Bavaria, J. Archaeol. Sci., 30, 1373-83
View in Google Scholar

Sealy J., R. Armstrong, C. Schrire, 1995, Beyond lifetime averages: Tracing life histories through isotopic analysis of different calcified tissues from archaeological human skeletons, Antiquity, 69, 290-300
View in Google Scholar

Sealy J. C., N. J. van der Merwe, J. A. Lee- Thorp, J.L Lanham, 1987, Nitrogen isotopic ecology in southern Africa: Implications for environmental and dietary tracing, Geochim. Cosmochim. Acta, 51, 2707-17
View in Google Scholar

Sillen A., 1981, Post depositional changes in Natufian and Aurignacian faunal bones from Hayonim Cave, Paleorient, 7, 81-85
View in Google Scholar

Sillen A., 1986, Biogenic and diagenetic Sr/Ca in Plio-Pleistocene fossils in the Omo Shungura Formation, Paleobiology, 12, 311-23
View in Google Scholar

Sillen A., 1989, Diagenesis of the inorganic phase of cortical bone, [in:] The Chemistry of Prehistoric Human Bone, T. D. Price (ed.), Cambridge University Press, pp. 211-29
View in Google Scholar

Sillen A., 1992, Strontium-calcium ratios (Sr/Ca) of Australopithecus robustus and associated fauna from Swartkrans, J. Hum. Evol., 23, 495-516
View in Google Scholar

Sillen A., J. C. Sealy, N. J. van der Merwe, 1989, Chemistry and paleodietary research: No more easy answers, Am. Antiq., 54, 504-12
View in Google Scholar

Sponheimer M., J. A. Lee-Thorp, 2006, Enamel diagenesis at South African Australopith sites: Implications for paleoecological reconstruction with trace elements, Geochim. Cosmochim. Acta, 70, 1644-54
View in Google Scholar

Stephan E., 2000, Oxygen isotope analysis of animal bone phosphate: Method refinement, influence of consolidants, and reconstruction of paleotemperatures for Holocene sites, J. Archaeol. Sci., 27, 523-35
View in Google Scholar

Stuart-Williams H. L., H. P. Schwarcz, 1997, Oxygen isotopic determination of climatic variation using phosphate from beaver bone, tooth enamel, and dentine, Geochim. Cosmochim. Acta, 61, 2539-50
View in Google Scholar

Surovell, T. A., M. C. Stiner, 2001, Standardizing Infra-red Measures of bone mineral crystallinity: An experimental approach, J. Archaeol. Sci., 28, 633-42
View in Google Scholar

Szostek K., 2006, Rekonstrukcja ogólnego stanu biologicznego historycznych i przedhistorycznych grup ludzkich na podstawie analiz makro i mikroelementów w materiale odontologicznym, Wyd. PiT, Kraków
View in Google Scholar

Thackeray J. F., N. J. van der Merwe, J. A. Lee- Thorp, A. Sillen, J. L. Lanham, et al., 1990, Changes in carbon isotope ratios in the late Permian recorded in therapsid tooth apatite, Nature, 292, 751-53
View in Google Scholar

Thompson T. J. U., M. Gauthier, M. Islam, 2009, The application of a new method of Fourier Transform Spectroscopy to the analysis of burned bone, J. Archaeol. Sci., 36, 910-14
View in Google Scholar

Tieszen L.L, T. Fagre, 1993, Effect of diet quality and composition on the isotopic composition of respiratory CO2, bone collagen, bioapatite and soft tissues, [in:] Prehistoric Human Bone: Archaeology at the Molecular Level, J.B Lambert, G. Grupe (eds.), Springer- Verlag, Berlin, pp. 121-55
View in Google Scholar

Tutken T., H. Furrer, T. W. Vennemann, 2007, Stable isotope compositions of mammoth teeth from Niederweningen, Switzerland: Implications for the Late Pleistocene climate, environment, and diet, Quat. Int., 164, 139-50
View in Google Scholar

Ubelaker D. H., M. A. Katzenberg, L. G. Doyon, 1995, Status and diet in precontact highland Ecuador, Am. J. Phys. Anthropol., 97, 403-11
View in Google Scholar

Van der Merwe N. J., R. F. Williamson, S. Pfeiffer, S. C. Thomas, K. O. Allegretto, 2003, The Moatfield ossuary: Isotopic dietary analysis of an Iroquoian community, using dental tissue, J. Anthropol. Archaeol., 22, 245-61
View in Google Scholar

White C., F. J. Longstaffe, K. R. Law, 2004a, Exploring the effects of environment, physiology and diet on oxygen isotope ratios in ancient Nubian bones and teeth, J. Archaeol. Sci., 31, 233-50
View in Google Scholar

White C. D., M. E. Pohl, H. P. Schwarcz, F. J. Longstaffe, 2001, Isotopic evidence for Maya patterns of deer and dog use at Preclasic Colha, J. Archaeol. Sci., 28, 89-97
View in Google Scholar

White C. D., M. W. Spence, F. J. Longstaffe, K.R Law, 2004b, Demography and ethnic continuity in the Tlailotlacan enclave of Teotihuacan: The evidence from stable oxygen isotopes, J. Anthropol. Archaeol., 23, 385-403
View in Google Scholar

White C. D., M. W. Spence, Q. Stuart-Williams, H. P. Schwacz, 1998, Oxygen isotopes and the identification of geographical origins: The Valley of Oaxaca versus the Valley of Mexico, J. Archaeol. Sci., 25, 643-55
View in Google Scholar

Wright, L. E., H. P. Schwarcz, 1996, Infrared and isotopic evidence for diagenesis of bone apatite at Dos Pilas, Guatemala: Palaeodietary implications, J. Archaeol. Sci., 23, 933-44
View in Google Scholar

Wright L. E., H. P. Schwarcz, 1998, Stable carbon and oxygen isotopes in human tooth enamel: Identifying breastfeeding and weaning in prehistory, Am. J. Phys. Anthropol., 106, 1-18
View in Google Scholar

Wright L. E., H. P. Schwarcz, 1999, Correspondence between stable carbon, oxygen and nitrogen isotopes in human tooth enamel and dentine: Infant diets at Kaminaljuyú, J. Archaeol. Sci., 26, 1159-70
View in Google Scholar

Downloads

Published

2009-01-30

How to Cite

Szostek, K. (2009). Chemical signals and reconstruction of life strategies from ancient human bones and teeth – problems and perspectives. Anthropological Review, 72, 3–30. https://doi.org/10.2478/v10044-008-0013-5

Issue

Section

Articles

Most read articles by the same author(s)

Similar Articles

You may also start an advanced similarity search for this article.