Empiryczne modele wzrostu gospodarczego z efektami przestrzennymi
Keywords:
modele przesterzenne, efekty przestrzenne, modelowanie ad-hocAbstract
W ostatnich latach w literaturze nauk regionalnych wiele miejsca poświęca się efektom przestrzennym oraz problemom uwzględnienia zależności przestrzennych w specyfikacji regionalnych modeli wzrostu. W kontekście teorii NEG oraz modeli wzrostu endogenicznego, jako główne źródło autokorelacji przestrzennej zaczęto postrzegać tzw. efekty zewnętrzne oraz zjawisko rozprzestrzeniania się. Z punktu widzenia modelowania regionalnego wzrostu gospodarczego istotnej wagi nabrało więc, nie tyle uwzględnianie w modelach zależności przestrzennych (nadal bardzo popularne w literaturze tzw. podejście ad hoc), ale raczej modelowanie efektów przestrzennych z pełnym zrozumieniem ich ekonomicznych przyczyn. Takie podejście pozwala, nie tylko na poprawniejszą konstrukcję modelu pod względem statystycznym, ale daje również możliwość głębszego zrozumienia i interpretacji oszacowanych parametrów w modelach wzrostu.Downloads
References
Abdel-Rahman H. M., Fujita M. (1990), Product variety, Marshallian externalities and city size, „Journal of Urban Economics”, Vol. 33, s. 189–222.
Google Scholar
Anselin L. (1988), Spatial Econometrics: Methods and Models, Kluwer, Dordrecht.
Google Scholar
Anselin L., Bera A. K. (1998), Spatial dependence in linear regression models with an introduction to spatial econometrics, [w:] A. Ullah, D. Giles (red.), Handbook of Applied Economic Statistics, Marcel Dekker, New York.
Google Scholar
Anselin L., Rey S. J. (1991), Properties of tests for spatial dependence in linear regression models, „Geographical Analysis”, Vol. 23, s. 112–131.
Google Scholar
Anselin L., Smirnov O. (1996), Efficient algorithms for constructing proper higher order spatial lag operators, „Journal of Regional Science”, Wiley, 36.
Google Scholar
Armstrong H. (1995), Convergence among regions of the European Union, 1950–1990, „Papers in Regional Science”, 74: 143–152.
Google Scholar
Barro R. J., Sala-i-Martin X. (1992), Convergence, „Journal of Political Economy”, Vol. 100 (2), s. 223–251.
Google Scholar
Baumol W. J. (1986), Productivity growth, convergence, and welfare: what the long–run data show, „American Economic Review”, Vol. 76, s. 1072–1085.
Google Scholar
Bernard A., Jones C. (1996), Productivity and convergence across U.S. States and industries, „Empirical Economics”, Vol. 21, s. 113–135.
Google Scholar
Bernat A. (1996), Does manufacturing matter? A spatial econometric view of Kaldor’s laws, „Journal of Regional Science”, Vol. 36, s. 463–477.
Google Scholar
Besner C. (2002), A Spatial Autoregressive Specification with a Comparable Sales Weighting Scheme, „Journal of Real Estate Research”, American Real Estate Society, New York, 24.
Google Scholar
Bivand R., Brundstad R. (2006), Further explorations of interactions between agricultural policy and regional growth in Western Europe: Approaches to nonstationarity in spatial econometrics, „Papers in Regional Science”, Vol. 85 (2).
Google Scholar
Bodson P., Peeters D. (1975), Estimations of the Coefficients of a Linear Regression in the Presence of Spatial Autocorrelation: An Application to a Belgian Labour-Demand Function, „Environment
Google Scholar
and Planning”, A 7 (4).
Google Scholar
Carlino G., Mills L. (1993), Are U.S. regional incomes converging? A time series analysis, „Journal of Monetary Economics”, Vol. 32, s. 335–346.
Google Scholar
Carlino G., Mills L. (1996), Convergence and the US States: a time series analysis, „Journal of Regional Science”, Vol. 36, s. 597–616.
Google Scholar
Chatterji M., Dewhurst J. (1996), Convergence clubs and relative economic performance in Great Britain: 1977–1991, „Regional Studies”, Vol. 30, s. 31–40.
Google Scholar
Ciccone A., Hall R. E. (1996), Productivity and the density of economic activity, „American Economic Review”, Vol. 86, s. 54–70.
Google Scholar
Cliff A., Ord J. K. (1981), Spatial Processes: Models and Applications, Pion, London.
Google Scholar
Dacey M. F. (1968), A Review of Measures of Contiguity for Two and K-Color Maps, Englewood Cliffs Spatial Analysis: A Reader in Statistical Geography, Prentice-Hall.
Google Scholar
Deng M. (2008), An Anisotropic Model for Spatial Processes, „Geographical Analysis”, Wiley 40 (1).
Google Scholar
Dixit A., Stiglitz J. E. (1977), Monopolistic competition and optimum product diversity, „American Economic Review”, Vol. 67, s. 297–308.
Google Scholar
EUROSTAT (2002), European regional statistics. Reference guide, European Communities, Luxembourg.
Google Scholar
Fingleton B. (1999), Spurious spatial regression: some Monte Carlo results with spatial unit Root and Spatial Cointegration, „Journal of Regional Science”, Vol. 39, s. 1–19.
Google Scholar
Fingleton B. (2006), The new economic geography versus urban economics: an evaluation using local wage rates in Great Britain, „Oxford Economic Papers”, 58.
Google Scholar
Fingleton B., López-Bazo E. (2006), Empirical growth models with spatial effects, „Papers in Regional Science”, Vol. 85 (2), s. 177–198.
Google Scholar
Fingleton B., McCombie J. S. L. (1998), Increasing Returns and Economic Growth: Some Evidence for Manufacturing from the European Union Regions, Oxford Economic Papers, Vol. 50, s. 89–105.
Google Scholar
Fingleton B., McCombie J. S. L. (1999), Increasing Returns and Economic Growth: Some Evidence for Manufacturing from the European Union Regions: A Correction, Oxford Economic Papers,
Google Scholar
Vol. 51 (3), s. 574–575.
Google Scholar
Fingleton B. (2001), Equilibrium and economic growth: spatial econometric models and simulations, „Journal of Regional Science”, Vol. 41, s. 117–147.
Google Scholar
Fingleton B. (2004), Some alternative geo-economics for Europe’s regions, „Journal of Economic Geography”, Vol. 4, s. 389–420.
Google Scholar
Fischer M. M. (2011), A spatial Mankiw–Romer–Weil model: theory and evidence, Ann Reg Sci, 47: 419–436.
Google Scholar
Florax R., Folmer H. (1992), Specification and estimation of Spatial linear Regression Models: Monte Carlo Evaluation of Pre–Test Estimation, „Regional Science and Urban Economics”,
Google Scholar
Vol. 22, s. 405–432.
Google Scholar
Fujita M., Krugman P., Venables A. (1999), The Spatial Economy: Cities, Regions, and International Trade, MIT Press, Cambridge MA.
Google Scholar
Getis A., Aldstadt J. (2004), Constructing the Spatial Weights Matrix Using A Local Statistic, „Geographical Analysis”, Wiley, 36.
Google Scholar
Guillain R., Dall’erba S., Le Gallo J. (2007), Politiques de développement et croissance régionale en Europe: le rôle des rendements croissants et des dépendances spatiales, Laboratoire d’Economie et de Gestion, Document de travail – Economie, 2.
Google Scholar
Harris R., Lau E. (1998), Verdoorn’s law and increasing returns to scale in the UK regions, 1968–91: some new estimates based on the cointegration approach, Oxford Economic Papers, Vol. 50, s. 201–219.
Google Scholar
Kaldor N. (1957), A Model of Economic Growth, „Economic Journal”, December, s. 65–94.
Google Scholar
Kelejian H. H., Prucha I. R. (1998), A Generalized Spatial Two-Stage Least Squares Procedure for Estimating a Spatial Autoregressive Model with Autoregressive Disturbances, „Journal of Real Estate Finance and Economics”, Springer, 17.
Google Scholar
Krugman P. (1991), Geography and Trade, MIT Press, Cambridge MA.
Google Scholar
Krugman P., Venables A. (1995), Globalization and the inequality of nations, „Quarterly Journal of Economics”, Vol. 110, s. 857–880.
Google Scholar
León-Ledesma M. A. (2000), Economic growth and Verdoorn’s law in the Spanish regions, „International Review of Applied Economics”, Vol. 14, s. 55–69.
Google Scholar
LeSage J. P., Fischer M. M. (2012), Estimates of the Impact of Static and Dynamic Knowledge Spillovers on Regional Factor Productivity, „International Regional Science Review”, 35 (1).
Google Scholar
López-Bazo E., Fingleton B. (2003), Explaining the distribution of manufacturing productivity in the EU regions, ERSA conference papers ersa03p197, European Regional Science Association.
Google Scholar
López-Bazo E., Vayá E., Artis A. (2004), Regional externalities and growth: evidence from European regions, „Journal of Regional Science”, Vol. 44, s. 43–73.
Google Scholar
López-Bazo E., Vayá E., Mora A. J., Suriñach J. (1999), Regional economic dynamics and convergence in the European Union, „The Annals of Regional Science”, Vol. 33, s. 343–370.
Google Scholar
Mankiw N., Romer D., Weil D. (1992), A contribution to the Empirics of Growth, „Quarterly Journal of Economics”, 107.
Google Scholar
Neven D., Gouyette C. (1995), Regional convergence in the European Community, „Journal of Common Market Studies”, Vol. 33, s. 47–65.
Google Scholar
Olejnik A. (2008), Using the spatial autoregressively distributed lag model in assessing the regional convergence of per-capita income in the EU25, „Papers in Regional Science”, Wiley, 87/3.
Google Scholar
Olejnik A. (2012a), Multidimensional spatial process of productivity growth in EU 22, working paper.
Google Scholar
Olejnik A. (2012b), Spatial autoregressive model – a multidimensional perspective with an example study of the spatial income process in the EU 25, working paper.
Google Scholar
Ord J. K., Getis A. (1995), Local Spatial Autocorrelation Statistics: Distributional Issues and an Application, „Geographical Analysis”, 27.
Google Scholar
Pons-Novell J., Viladecans E. (1999), Kaldor’s laws and spatial dependence: evidence for the European regions, „Regional Studies”, Vol. 33, s. 443–451.
Google Scholar
Rey S., Montouri B. (1999), U.S. regional income convergence: A spatial econometric perspective, „Regional Studies”, Vol. 33, s. 143–156.
Google Scholar
Rivera-Batiz F. L. (1988), Increasing returns, monopolistic competition, and agglomeration economies
Google Scholar
in consumption and production, „Regional Science and Urban Economics, Elsevier”, Vol. 18 (1), s. 125–153.
Google Scholar
Sala-i-Martin X. (1996), The classical approach to convergence analysis, „Economic Journal”, Vol. 106, 437, s. 1019–1036.
Google Scholar
Verdoorn P. (1949), Fattori che Regolano lo Svilluppo della Produt-tivita del Lavoro. L’Industria, Vol. 1, s. 45–53.
Google Scholar