A Benchmark Similarity Measures for Fermatean Fuzzy Sets
DOI:
https://doi.org/10.18778/0138-0680.2022.08Keywords:
Fermatean fuzzy set, similarity measure, S-similarity measureAbstract
In this paper, we utilized triangular conorms (S-norm). The essence of using S-norm is that the similarity order does not change using different norms. In fact, we are investigating for a new conception for calculating the similarity of two Fermatean fuzzy sets. For this purpose, utilizing an S-norm, we first present a formula for calculating the similarity of two Fermatean fuzzy values, so that they are truthful in similarity properties. Following that, we generalize a formula for calculating the similarity of the two Fermatean fuzzy sets which prove truthful in similarity conditions. Finally, various numerical examples have been presented to elaborate this method.
References
M. Akram, G. Shahzadi, A. A. H. Ahmadini, Decision-making framework for an effective sanitizer to reduce COVID-19 under Fermatean fuzzy environment, Journal of Mathematics, vol. 2020 (2020), DOI: https://doi.org/10.1155/2020/3263407.
Google Scholar
DOI: https://doi.org/10.1155/2020/3263407
K. T. Atanassov, Intuitionistic fuzzy sets, Springer, Dordrecht, chap. Intuitionistic fuzzy sets (1999), pp. 1–137, DOI: https://doi.org/10.1007/978-3-7908-1870-3_1.
Google Scholar
DOI: https://doi.org/10.1007/978-3-7908-1870-3_1
S. B. Aydemir, S. Yilmaz Gunduz, Fermatean fuzzy TOPSIS method with dombi aggregation operators and its application in multi-criteria decision making, Journal of Intelligent & Fuzzy Systems, vol. 39(1) (2020), pp. 851–869, DOI: https://doi.org/10.3233/JIFS-191763.
Google Scholar
DOI: https://doi.org/10.3233/JIFS-191763
V. Chinnadurai, G. Thirumurugan, M. Umamaheswari, Some Properties and Operations of Spherical Fermatean Fuzzy Matrices, European Journal of Molecular & Clinical Medicine, vol. 7(8), p. 2020, URL: https://ejmcm.com/article_7745.html.
Google Scholar
Z. Deng, J. Wang, Evidential Fermatean fuzzy multicriteria decision-making based on Fermatean fuzzy entropy, International Journal
Google Scholar
of Intelligent Systems, vol. 36(10) (2021), pp. 5866–5886, DOI: https://doi.org/10.1002/int.22534.
Google Scholar
DOI: https://doi.org/10.1002/int.22534
M. A. Firozja, B. Agheli, E. B. Jamkhaneh, A new similarity measure for Pythagorean fuzzy sets, Complex & Intelligent Systems, vol. 6 (2020), pp. 67–74, DOI: https://doi.org/10.1007/s40747-019-0114-3.
Google Scholar
DOI: https://doi.org/10.1007/s40747-019-0114-3
R. Fullér, Neural fuzzy systems, Åbo Academi University (1995), URL: https://uni-obuda.hu/users/fuller.robert/ln1.pdf, lecture notes.
Google Scholar
H. Garg, G. Shahzadi, M. Akram, Decision-making analysis based on Fermatean fuzzy Yager aggregation operators with application in COVID-19 testing facility, Mathematical Problems in Engineering, vol. 2020 (2020), DOI: https://doi.org/10.1155/2020/7279027.
Google Scholar
DOI: https://doi.org/10.1155/2020/7279027
S. Gül, Fermatean fuzzy set extensions of SAW, ARAS, and VIKOR with applications in COVID-19 testing laboratory selection problem, Expert Systems, vol. 38(8) (2021), p. e12769, DOI: https://doi.org/10.1111/exsy.12769.
Google Scholar
DOI: https://doi.org/10.1111/exsy.12769
A. Hadi, W. Khan, A. Khan, A novel approach to MADM problems using Fermatean fuzzy Hamacher aggregation operators, International Journal of Intelligent Systems, vol. 36(7) (2021), pp. 3464–3499, DOI: https://doi.org/10.1002/int.22423.
Google Scholar
DOI: https://doi.org/10.1002/int.22423
A. Jan, A. Khan, W. Khan, M. Afridi, A novel approach to MADM problems using Fermatean fuzzy Hamacher prioritized aggregation operators, Soft Computing, vol. 25(22) (2021), pp. 13897–13910, DOI: https://doi.org/10.1007/s00500-021-06308-w.
Google Scholar
DOI: https://doi.org/10.1007/s00500-021-06308-w
D. Liu, Y. Liu, X. Chen, Fermatean fuzzy linguistic set and its application in multicriteria decision making, International Journal of
Google Scholar
Intelligent Systems, vol. 34(5) (2019), pp. 878–894, DOI: https://doi.org/10.1002/int.22079.
Google Scholar
DOI: https://doi.org/10.1002/int.22079
D. Liu, Y. Liu, L. Wang, Distance measure for Fermatean fuzzy linguistic term sets based on linguistic scale function: An illustration of the TODIM and TOPSIS methods, International Journal of Intelligent Systems, vol. 34(11) (2019), pp. 2807–2834, DOI: https://doi.org/10.1002/int.22162.
Google Scholar
DOI: https://doi.org/10.1002/int.22162
A. R. Mishra, P. Rani, K. Pandey, Fermatean fuzzy CRITIC-EDAS approach for the selection of sustainable third-party reverse logistics providers using improved generalized score function, Journal of Ambient Intelligence and Humanized Computing, vol. 13(1) (2022), pp. 295–311, DOI: https://doi.org/10.1007/s12652-021-02902-w.
Google Scholar
DOI: https://doi.org/10.1007/s12652-021-02902-w
L. Sahoo, Some score functions on Fermatean fuzzy sets and its application to bride selection based on TOPSIS method, International Journal of Fuzzy System Applications, vol. 10(3) (2021), pp. 18–29, DOI: https://doi.org/10.4018/IJFSA.2021070102.
Google Scholar
DOI: https://doi.org/10.4018/IJFSA.2021070102
V. Salsabeela, S. J. John, TOPSIS techniques on Fermatean fuzzy soft sets, [in:] AIP conference proceedings, vol. 2336, AIP Publishing LLC (2021), p. 040022, DOI: https://doi.org/10.1063/5.0045914.
Google Scholar
DOI: https://doi.org/10.1063/5.0045914
T. Senapati, R. R. Yager, Fermatean fuzzy weighted averaging/geometric operators and its application in multi-criteria decision-making methods, Engineering Applications of Artificial Intelligence, vol. 85 (2019), pp. 112–121, DOI: https://doi.org/10.1016/j.engappai.2019.05.012.
Google Scholar
DOI: https://doi.org/10.1016/j.engappai.2019.05.012
T. Senapati, R. R. Yager, Some new operations over Fermatean fuzzy numbers and application of Fermatean fuzzy WPM in multiple criteria decision making, Informatica, vol. 30(2) (2019), pp. 391–412.
Google Scholar
DOI: https://doi.org/10.15388/Informatica.2019.211
T. Senapati, R. R. Yager, Fermatean fuzzy sets, Journal of Ambient Intelligence and Humanized Computing, vol. 11(2) (2020), pp. 663–674, DOI: https://doi.org/10.1007/s12652-019-01377-0.
Google Scholar
DOI: https://doi.org/10.1007/s12652-019-01377-0
D. Sergi, I. U. Sari, Fuzzy capital budgeting using fermatean fuzzy sets, [in:] International Conference on Intelligent and Fuzzy Systems, Springer (2020), pp. 448–456, DOI: https://doi.org/10.1007/978-3-030-51156-2_52.
Google Scholar
DOI: https://doi.org/10.1007/978-3-030-51156-2_52
D. Sergi, I. U. Sari, T. Senapati, Extension of capital budgeting techniques using interval-valued Fermatean fuzzy sets, Journal of
Google Scholar
Intelligent & Fuzzy Systems, (Preprint) (2022), pp. 1–12, DOI: https://doi.org/10.3233/JIFS-219196.
Google Scholar
DOI: https://doi.org/10.3233/JIFS-219196
I. Silambarasan, Fermatean fuzzy matrices, TWMS Journal of Applied and Engineering Mathematics, (2020), accepted.
Google Scholar
R. Verma, A Decision-Making Approach Based on New Aggregation Operators under Fermatean Fuzzy Linguistic Information Environment, Axioms, vol. 10(2) (2021), DOI: https://doi.org/10.3390/axioms10020113.
Google Scholar
DOI: https://doi.org/10.3390/axioms10020113
R. R. Yager, Pythagorean fuzzy subsets, [in:] 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), IEEE (2013), pp. 57–61, DOI: https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375.
Google Scholar
DOI: https://doi.org/10.1109/IFSA-NAFIPS.2013.6608375
Z. Yang, H. Garg, X. Li, Differential Calculus of Fermatean Fuzzy Functions: Continuities, Derivatives, and Differentials, International
Google Scholar
Journal of Compututational Intelligence Systems, vol. 14(1) (2021), pp. 282–294, DOI: https://doi.org/10.2991/ijcis.d.201215.001.
Google Scholar
DOI: https://doi.org/10.2991/ijcis.d.201215.001
L. A. Zadeh, Fuzzy sets, [in:] G. J. Klear, B. Yuan (eds.), Fuzzy sets, fuzzy logic, and fuzzy systems: selected papers by Lotfi A. Zadeh,
Google Scholar
vol. 6 of Advances in Fuzzy Systems – Applications and Theory, World Scientific (1996), pp. 394–432, DOI: https://doi.org/10.1142/9789814261302_0001.
Google Scholar
DOI: https://doi.org/10.1142/9789814261302_0021
Q. Zhang, J. Hu, J. Feng, A. Liu, Multiple criteria decision making method based on the new similarity measures of Pythagorean fuzzy set, Journal of Intelligent & Fuzzy Systems, vol. 39(1) (2020), pp. 809–820, DOI: https://doi.org/10.3233/JIFS-191723.
Google Scholar
DOI: https://doi.org/10.3233/JIFS-191723
X. Zhang, A novel approach based on similarity measure for Pythagorean fuzzy multiple criteria group decision making, International Journal of Intelligent Systems, vol. 31(6) (2016), pp. 593–611, DOI: https://doi.org/10.1002/int.21796.
Google Scholar
DOI: https://doi.org/10.1002/int.21796
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.