Sequent Calculi for Orthologic with Strict Implication
DOI:
https://doi.org/10.18778/0138-0680.2021.22Keywords:
Quantum logic, sequent calculus, completeness theorem, implication, orthologicAbstract
In this study, new sequent calculi for a minimal quantum logic (
References
J. C. Abbott, Orthoimplication Algebras, Studia Logica, vol. 35(2) (1976), pp. 173–177, DOI: https://doi.org/10.1007/BF02120879
Google Scholar
DOI: https://doi.org/10.1007/BF02120879
K. Bednarska, A. Indrzejczak, Hypersequent Calculi for S5 – The Methods of Cut-elimination, Logic and Logical Philosophy, vol. 24(3) (2015), pp. 277–311, DOI: https://doi.org/10.12775/LLP.2015.018
Google Scholar
DOI: https://doi.org/10.12775/LLP.2015.018
G. Birkhoff, J. V. Neumann, The Logic of Quantum Mechanics, Annals of Mathematics, vol. 37(4) (1936), pp. 823–843, DOI: https://doi.org/10.2307/1968621
Google Scholar
DOI: https://doi.org/10.2307/1968621
I. Chajda, The axioms for implication in orthologic, Czechoslovak Mathematical Journal, vol. 58(1) (2008), pp. 735–744, DOI: https://doi.org/10.1007/s10587-008-0002-2
Google Scholar
DOI: https://doi.org/10.1007/s10587-008-0002-2
I. Chajda, J. Cirulis, An Implicational Logic for Orthomodular Lattices, Acta Scientiarum Mathematicarum, vol. 82(34) (2016), pp. 383–394, DOI: https://doi.org/10.14232/actasm-015-813-6
Google Scholar
DOI: https://doi.org/10.14232/actasm-015-813-6
I. Chajda, R. Halaš, An Implication in Orthologic, International Journal of Theoretical Physics, vol. 44(7) (2005), pp. 735–744, DOI: https://doi.org/10.1007/s10773-005-7051-1
Google Scholar
DOI: https://doi.org/10.1007/s10773-005-7051-1
I. Chajda, R. Halaš, H. Länger, Orthomodular Implication Algebras, International Journal of Theoretical Physics, vol. 40(11) (2001), pp. 1875–1884, DOI: https://doi.org/10.1023/A:1011933018776
Google Scholar
DOI: https://doi.org/10.1023/A:1011933018776
I. Chajda, H. Länger, Orthomodular Posets Can Be Organized as Conditionally Residuated Structures, Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica, vol. 53(2) (2014), pp. 29–33, URL: https://kma.upol.cz/data/xinha/ULOZISTE/ActaMath/2014/53-2-02.pdf
Google Scholar
I. Chajda, H. Länger, Orthomodular lattices can be converted into left-residuated l-groupoids, Miskolc Mathematical Notes, vol. 18(2) (2017), pp. 685–689, DOI: https://doi.org/10.18514/mmn.2017.1730
Google Scholar
DOI: https://doi.org/10.18514/MMN.2017.1730
I. Chajda, H. Länger, Residuation in orthomodular lattices, Topological Algebra and its Applications, vol. 5(1) (2017), pp. 1–5, DOI: https://doi.org/10.1515/taa-2017-0001
Google Scholar
DOI: https://doi.org/10.1515/taa-2017-0001
I. Chajda, H. Länger, How to introduce the connective implication in orthomodular posets, Asian-European Journal of Mathematics, vol. 14(4) (2021), p. 2150066, DOI: https://doi.org/10.1142/S1793557121500662
Google Scholar
DOI: https://doi.org/10.1142/S1793557121500662
M. L. D. Chiara, R. Giuntini, Quantum Logics, [in:] D. M. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, Springer Netherlands, Dordrecht (2002), pp. 129–228, DOI: https://doi.org/10.1007/978-94-017-0460-1_2
Google Scholar
DOI: https://doi.org/10.1007/978-94-017-0460-1_2
P. D. Finch, Quantum logic as an implication algebra, Bulletin of the Australian Mathematical Society, vol. 2(1) (1970), pp. 101–106, DOI: https://doi.org/10.1017/S0004972700041642
Google Scholar
DOI: https://doi.org/10.1017/S0004972700041642
G. M. Hardegree, Material Implication in Orthomodular (and Boolean) Lattices, Notre Dame Journal of Formal Logic, vol. 22(2) (1981), pp. 163–182, DOI: https://doi.org/10.1305/ndjfl/1093883401
Google Scholar
DOI: https://doi.org/10.1305/ndjfl/1093883401
G. M. Hardegree, Quasi-implication algebras, Part I: Elementary theory, Algebra Universalis, vol. 12(1) (1981), pp. 30––47, DOI: https://doi.org/10.1007/BF02483861
Google Scholar
DOI: https://doi.org/10.1007/BF02483861
G. M. Hardegree, Quasi-implication algebras, Part II: Structure theory, Algebra Universalis, vol. 12(1) (1981), pp. 48–65, DOI: https://doi.org/10.1007/BF02483862
Google Scholar
DOI: https://doi.org/10.1007/BF02483862
L. Herman, E. L. Marsden, R. Piziak, Implication Connectives in Orthomodular Lattices, Notre Dame Journal of Formal Logic, vol. 16(3) (1975), pp. 305–328, DOI: https://doi.org/10.1305/ndjfl/1093891789
Google Scholar
DOI: https://doi.org/10.1305/ndjfl/1093891789
A. Indrzejczak, Two Is Enough – Bisequent Calculus for S5, [in:] A. Herzig, A. Popescu (eds.), Frontiers of Combining Systems, Springer International Publishing, Cham (2019), pp. 277–294, DOI: https://doi.org/10.1007/978-3-030-29007-8_16
Google Scholar
DOI: https://doi.org/10.1007/978-3-030-29007-8_16
A. Indrzejczak, Sequents and Trees. An Introduction to the Theory and Applications of Propositional Sequent Calculi, Studies in Universal Logic, Birkhäuser, Basel (2021), DOI: https://doi.org/10.1007/978-3-030-57145-0
Google Scholar
DOI: https://doi.org/10.1007/978-3-030-57145-0
K. Ishii, R. Kashima, K. Kikuchi, Sequent Calculi for Visser’s Propositional Logics, Notre Dame Journal of Formal Logic, vol. 42(1) (2001), pp. 1–22, DOI: https://doi.org/10.1305/ndjfl/1054301352
Google Scholar
DOI: https://doi.org/10.1305/ndjfl/1054301352
G. Kalmbach, Orthomodular Lattices, Academic Press, New York (1983).
Google Scholar
T. Kawano, Advanced Kripke Frame for Quantum Logic, [in:] L. S. Moss, R. de Queiroz, M. Martinez (eds.), Logic, Language, Information, and Computation, Springer Berlin Heidelberg, Berlin, Heidelberg (2018), pp. 237–249, DOI: https://doi.org/10.1007/978-3-662-57669-4_14
Google Scholar
DOI: https://doi.org/10.1007/978-3-662-57669-4_14
T. Kawano, Labeled Sequent Calculus for Orthologic, Bulletin of the Section of Logic, vol. 47(4) (2018), pp. 217–232, DOI: https://doi.org/10.18778/0138-0680.47.4.01
Google Scholar
DOI: https://doi.org/10.18778/0138-0680.47.4.01
S. Negri, Proof Theory for Modal Logic, Philosophy Compass, vol. 6(8) (2011), pp. 523–538, DOI: https://doi.org/10.1111/j.1747-9991.2011.00418.x
Google Scholar
DOI: https://doi.org/10.1111/j.1747-9991.2011.00418.x
H. Nishimura, Sequential method in quantum logic, Journal of Symbolic Logic, vol. 45(2) (1980), pp. 339–352, DOI: https://doi.org/10.2307/2273194
Google Scholar
DOI: https://doi.org/10.2307/2273194
H. Nishimura, Proof Theory for Minimal Quantum Logic I, International Journal of Theoretical Physics, vol. 33(1) (1994), pp. 103–113, DOI: https://doi.org/10.1007/BF00671616
Google Scholar
DOI: https://doi.org/10.1007/BF00671616
H. Nishimura, Proof Theory for Minimal Quantum Logic II, International Journal of Theoretical Physics, vol. 33(7) (1994), pp. 1427–1443, DOI: https://doi.org/10.1007/BF00670687
Google Scholar
DOI: https://doi.org/10.1007/BF00670687
H. Ozawa, H. Odera, S. Chitani, Formal System QL for Quantum Logic, The Japan Association for Logical Philosophy, Logical Philosophy Research, vol. 3 (2003).
Google Scholar
M. Ozawa, Operational Meanings of Orders of Observables Defined through Quantum Set Theories with Different Conditionals, Electronic Proceedings in Theoretical Computer Science, vol. 236 (2017), pp. 127–144, DOI: https://doi.org/10.4204/eptcs.236.9
Google Scholar
DOI: https://doi.org/10.4204/EPTCS.236.9
F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, vol. 32 of Trends in Logic, Springer, Dordrecht (2011).
Google Scholar
DOI: https://doi.org/10.1007/978-90-481-9670-8
A. Visser, A Propositional Logic with Explicit Fixed Points, Studia Logica, vol. 40(2) (1981), pp. 155–175, DOI: https://doi.org/10.1007/BF01874706
Google Scholar
DOI: https://doi.org/10.1007/BF01874706
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.