A Sound Interpretation of Leśniewski's Epsilon in Modal Logic KTB

Authors

  • Takao Inoue Meiji Pharmaceutical University, Department of Medical Molecular Informatics, Tokyo, Japan; Hosei University, Graduate School of Science and Engineering Tokyo, Japan https://orcid.org/0000-0002-2080-7480

DOI:

https://doi.org/10.18778/0138-0680.2021.25

Keywords:

Le´sniewski’s ontology, propositional ontology, translation, interpretation, modal logic, KTB, soundness, Grzegorczyk’s modal logic

Abstract

In this paper, we shall show that the following translation IM from the propositional fragment L1 of Leśniewski's ontology to modal logic KTB is sound: for any formula ϕ and ψ of L1, it is defined as

(M1) IM(ϕψ)=IM(ϕ)IM(ψ),

(M2) IM(¬ϕ)=¬IM(ϕ),

(M3) IM(ϵab)=papa..papb..pbpa,

where pa and pb are propositional variables corresponding to the name variables a and b, respectively. In the last, we shall give some comments including some open problems and my conjectures.

References

[1] L. Aqvist, Deontic logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 605–714, DOI: https://doi.org/10.1007/978-94-009-6259-0
Google Scholar

[2] A. Blass, A faithful modal interpretation of propositional ontology, Mathematica Japonica, vol. 40 (1994), pp. 217–223.
Google Scholar

[3] G. Boolos, The Logic of Provability, Cambridge University Press, Cambridge (1993), DOI: https://doi.org/10.1017/CBO9780511625183
Google Scholar DOI: https://doi.org/10.1017/CBO9780511625183

[4] R. A. Bull, K. Segerberg, Basic modal logic, [in:] D. Gabbay, F. Guenthner (eds.), Handbook of Philosophical Logic, vol. II: Extensions of Classical Logic, D. Reidel, Dordrecht (1984), pp. 1–82, DOI: https://doi.org/10.1007/978-94-009-6259-0
Google Scholar DOI: https://doi.org/10.1007/978-94-009-6259-0

[5] A. Chagrov, M. Zakharyaschev, Modal Logic, Clarendon Press, Oxford (1997).
Google Scholar

[6] M. Fitting, Proof Methods for Modal and Intuitionistic Logics, vol. 168 of Synthese Library, D. Reidel, Dordrecht (1983), DOI: https://doi.org/10.1007/978-94-017-2794-5
Google Scholar DOI: https://doi.org/10.1007/978-94-017-2794-5

[7] J. D. Hamkins, B. Löwe, The modal logic of forcing, Transactions of the American Mathematical Society, vol. 360 (2007), pp. 1793–1817, DOI: https://doi.org/10.1090/S0002-9947-07-04297-3
Google Scholar DOI: https://doi.org/10.1090/S0002-9947-07-04297-3

[8]G. E. Hughes, M. J. Cresswell, A Companion to Modal Logic, Methuen, London (1984).
Google Scholar

[9] T. Inoué, Partial interpretation of Leśniewski’s epsilon in modal and intensional logics (abstract), The Bulletin of Symbolic Logic, vol. 1 (1995), pp. 95–96.
Google Scholar

[10] T. Inoué, Partial interpretations of Leśniewski’s epsilon in von Wright-type deontic logics and provability logics, Bulletin of the Section of Logic, vol. 24(4) (1995), pp. 223–233.
Google Scholar

[11] T. Inoué, On Blass translation for Leśniewski’s propositional ontology and modal logics, Studia Logica, (2021), DOI: https://doi.org/10.1007/s11225-021-09962-1
Google Scholar DOI: https://doi.org/10.1007/s11225-021-09962-1

[12] A. Ishimoto, A propositional fragment of Leśniewski’s ontology, Studia Logica, vol. 36 (1977), pp. 285–299, DOI: https://doi.org/10.1007/BF02120666
Google Scholar DOI: https://doi.org/10.1007/BF02120666

[13] M. Kobayashi, A. Ishimoto, A propositional fragment of Leśniewski’s ontology and its formulation by the tableau method, Studia Logica, vol. 41 (1982), pp. 181–195, DOI: https://doi.org/10.1007/BF00370344
Google Scholar DOI: https://doi.org/10.1007/BF00370344

[14] H. Ono, Proof Theory and Algebra in Logic, vol. 2 of Short Textbooks in Logic, Springer, Singapore (2019), DOI: https://doi.org/10.1007/978-981-13-7997-0
Google Scholar DOI: https://doi.org/10.1007/978-981-13-7997-0

[15] F. Poggiolesi, Gentzen Calculi for Modal Propositional Logic, vol. 32 of Trends in Logic Series, Springer, Dordrecht (2011), DOI: https://doi.org/10.1007/978-90-481-9670-8
Google Scholar DOI: https://doi.org/10.1007/978-90-481-9670-8

[16] Y. Savateev, D. Shamkanov, Non-well-founded proofs for the Grzegorczyk modal logic, The Review of Symbolic Logic, vol. 14 (2021), pp. 22–50, DOI: https://doi.org/10.1017/S1755020319000510
Google Scholar DOI: https://doi.org/10.1017/S1755020319000510

[17] J. Słupecki, S. Leśniewski’s calculus of names, Studia Logica, vol. 3 (1955), pp. 7–71, DOI: https://doi.org/10.1007/BF02067245
Google Scholar DOI: https://doi.org/10.1007/BF02067245

[18] M. Takano, A semantical investigation into Leśniewski’s axiom of his ontology, Studia Logica, vol. 44 (1985), pp. 71–77, DOI: https://doi.org/10.1007/BF00370810
Google Scholar DOI: https://doi.org/10.1007/BF00370810

[19] R. Urbaniak, Leśniewski’s Systems of Logic and Foundations of Mathematics, vol. 37 of Trends in Logic Series, Springer, Cham (2014), DOI: https://doi.org/10.1007/978-3-319-00482-2
Google Scholar DOI: https://doi.org/10.1007/978-3-319-00482-2

Downloads

Published

2021-11-09

How to Cite

Inoue, T. (2021). A Sound Interpretation of Leśniewski’s Epsilon in Modal Logic KTB. Bulletin of the Section of Logic, 50(4), 455–463. https://doi.org/10.18778/0138-0680.2021.25

Issue

Section

Research Article
Crossref
0
Scopus
0