Many Faces of Lattice Tolerances
DOI:
https://doi.org/10.18778/0138-0680.48.4.03Keywords:
lattice, tolerance, congruence, covering system, gluingAbstract
Our aim is to overview and discuss some of the most popular approaches to the notion of a tolerance relation in algebraic structures with the special emphasis on lattices.
References
[1] M. Arbib, Tolerance automata, Kybernetika, Vol. 3 (1967), pp. 223–233.
Google Scholar
[2] H. Poincaré (Author) and J. W. Bolduc (Translator), Mathematics and Science: Last essays (1913), Kessinger Publishing, 2010.
Google Scholar
[3] H. J. Bandelt, Tolerance relations of lattices, Bulletin of the Australian Mathematical Society, Vol. 23 (1981), pp. 367–381. https://doi.org/10.1017/S0004972700007255
Google Scholar
[4] I. Chajda, Algebraic Theory of Tolerance Relations, Univerzita Palackého Olomouc, Olomouc, 1991.
Google Scholar
[5] I. Chajda, G. Czédli, and R. Halaš, Independent joins of tolerance factorable varieties, Algebra Universalis, Vol. 69 (2013), pp. 83–92. https://doi.org/10.1007/s00012-012-0213-0
Google Scholar
[6] I. Chajda, G. Czédli, R. Halaš, and P. Lipparini, Tolerances as images of congruences in varieties defined by linear identities, Algebra Universalis, Vol. 69 (2013), pp. 167–169. https://doi.org/10.1007/s00012-013-0219-2
Google Scholar
[7] I. Chajda and J. Duda, Blocks of binary relations, Annales Universitatis Scientiarium Budapestinensis, Sectio Mathematica, Vol. 13–14 (1979–1980), pp. 3–9.
Google Scholar
[8] I. Chajda, J. Niederle, and B. Zelinka, On existence conditions for compatible tolerances, Czechoslovak Mathematical Journal, Vol. 2, (1976), pp. 304–311.
Google Scholar
[9] I. Chajda and B. Zelinka, Lattices of tolerances, Časopis pro pěstování matematiky, Vol. 102 (1977), pp. 10–24.
Google Scholar
[10] G. Czédli, Factor lattices by tolerances, Acta Scientiarum Mathematicarum (Szeged), Vol. 44 (1982), pp. 35–42.
Google Scholar
[11] G. Czédli and G. Grätzer, Lattice tolerances and congruences, Algebra Universalis, Vol. 66 (2011), pp. 5–6. https://doi.org/10.1007/s00012-011-0139-y
Google Scholar
[12] G. Czédli and E. W. Kiss, Varieties whose tolerances are homomorphic images of their congruences, Bulletin of the Australian Mathematical Society, Vol. 87 (2013), pp. 326–338. https://doi.org/10.1017/S0004972712000603
Google Scholar
[13] A. Day and Ch. Herrmann, Gluings of modular lattices, Order, Vol. 5 (1988), pp. 85–101. https://doi.org/10.1007/BF00143900
Google Scholar
[14] A. Day and B. Jónsson, Non-arguesian configurations and gluings of modular lattices, Algebra Universalis, Vol. 26 (1989), pp. 208–215. https://doi.org/10.1007/BF01236867
Google Scholar
[15] R. P. Dilworth, Lattices with unique irreducible decompositions, Annals of Mathematics, Vol. 41, No. 2 (1940), pp. 771–777. https://doi.org/10.2307/1968857
Google Scholar
[16] E. Fried and G. Grätzer, Notes on tolerance relations of lattices: A conjecture of R.N. McKenzie, Journal of Pure and Applied Algebra, Vol. 68 (1990), pp. 127–134. https://doi.org/10.1016/0022-4049(90)90138-8
Google Scholar
[17] B. Ganter and R. Wille, Formal concept analysis. Mathematical Foundations, Springer–Verlag, 1999. https://doi.org/10.1007/978-3-642-59830-2
Google Scholar
[18] G. Grätzer and G. H. Wenzel, Notes on tolerance relations on lattices, Acta Scientiarum Mathematicarum (Szeged), Vol. 54 (1990), pp. 229–240.
Google Scholar
[19] J. Grygiel, The concept of gluing for lattices, Wydawnictwo WSP, Cz¸estochowa, 2004.
Google Scholar
[20] J. Grygiel and S. Radeleczki, On the tolerance lattice of tolerance factors, Acta Mathematica Hungarica, Vol. 141, No. 3 (2013), pp. 220–237. https://doi.org/10.1007/s10474-013-0340-x
Google Scholar
[21] Ch. Herrmann, S-verklebte Summen von Verbänden, Mathematische Zeitschrift, Vol. 130 (1973), pp. 255–274. https://doi.org/10.1007/BF01246623
Google Scholar
[22] Ch. Herrmann, Alan Day’s work on modular and Arguesian lattices, Algebra Universalis, Vol. 34, No. 3 (1995), pp. 35–60. https://doi.org/10.1007/BF01200489
Google Scholar
[23] D. Hobby and R. McKenzie, The Structure of Finite Algebras, volume 76 of Contemporary Mathematics, American Mathematical Society, 2000. http://dx.doi.org/10.1090/conm/076
Google Scholar
[24] J. Järvinen and S. Radeleczki, Rough sets determined by tolerances, International Journal of Approximate Reasoning, Vol. 55, No. 6 (2014), pp. 1419–1438. https://doi.org/10.1016/j.ijar.2013.12.005
Google Scholar
[25] B. Jónsson, Algebras whose congruence lattices are distributive, Mathematica Scandinavia, Vol. 21, No. 1 (1967), pp. 110–121. https://doi.org/10.7146/math.scand.a-10850
Google Scholar
[26] J. F. Peters and P. Wasilewski, Tolerance spaces: Origins, theoretical aspects and applications, Information Sciences: Informatics and Computer Science, Intelligent Systems, Applications, Vol. 195 (2012), pp. 211–225. https://doi.org/10.1016/j.ins.2012.01.023
Google Scholar
[27] J. Pogonowski, Tolerance spaces with applications to linguistics, Wydawnictwo Naukowe UAM, Poznan, 1983.
Google Scholar
[28] J. A. Szrejder, Równosc, podobienstwo, porzadek, Wydawnictwa Naukowo-Techniczne, Warszawa, 1975.
Google Scholar
[29] E. Ch. Zeeman, The topology of the brain and visual perception, [in:] M. K. Fort (ed.), Topology of 3-Manifolds and related topics, New Jersey, 1962.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Bulletin of the Section of Logic
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.