Pseudo-BCH Semilattices
DOI:
https://doi.org/10.18778/0138-0680.47.2.04Keywords:
(pseudo-)BCK/BCI/BCH algebra, pseudo-BCH join (meet)-semilattice, weakly regular, arithmetical at 1Abstract
In this paper we study pseudo-BCH algebras which are semilattices or lattices with respect to the natural relations ≤; we call them pseudo-BCH join-semilattices, pseudo-BCH meet-semilattices and pseudo-BCH lattices, respectively. We prove that the class of all pseudo-BCH join-semilattices is a variety and show that it is weakly regular, arithmetical at 1, and congruence distributive. In addition, we obtain the systems of identities defininig pseudo-BCH meet-semilattices and pseudo-BCH lattices.
References
[1] I. Chajda, G. Eigenthaler, H. Länger, Congruence classes in universal algebra, Heldermann Verlag, Lemgo 2003.
Google Scholar
[2] W. A. Dudek, Y. B. Jun, Pseudo-BCI-algebras, East Asian Mathematical Journal 24 (2008), pp. 187–190.
Google Scholar
[3] W. A. Dudek, J. Thomys, On decompositions of BCH-algebras, Mathematica Japonica 35 (1990), pp. 1131–1138.
Google Scholar
[4] G. Georgescu, A. Iorgulescu, Pseudo-MV algebras: a noncommutative extension of MV algebras, [in:] The Proc. of the Fourth International Symp. on Economic Informatics (Bucharest, Romania, May 1999), pp. 961–968.
Google Scholar
[5] G. Georgescu, A. Iorgulescu, Pseudo-BL algebras: a noncommutative extension of BL algebras, [in:] Abstracts of the Fifth International Conference FSTA 2000 (Slovakia, February 2000), pp. 90–92.
Google Scholar
[6] G. Georgescu, A. Iorgulescu, Pseudo-BCK algebras: an extension of BCK algebras, [in:] Proc. of DMTCS’01: Combinatorics, Computability and Logic (Springer, London, 2001), pp. 97–114.
Google Scholar
[7] Q. P. Hu, X. Li, On BCH-algebras, Mathematics Seminar Notes 11 (1983), pp. 313–320.
Google Scholar
[8] Y. Imai, K. Iséki, On axiom systems of propositional calculi XIV, Proceedings of the Japan Academy 42 (1966), pp. 19–22.
Google Scholar
[9] A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part I, Journal of Multiple-Valued Logic and Soft Computing 27 (2016), pp. 353–406.
Google Scholar
[10] A. Iorgulescu, New generalizations of BCI, BCK and Hilbert algebras – Part II, Jornal of Multiple-Valued Logic and Soft Computing 27 (2016), pp. 407–456.
Google Scholar
[11] K. Iséki, An algebra related with a propositional culculus, Proceedings of the Japan Academy 42 (1966), pp. 26–29.
Google Scholar
[12] K. Iséki, S. Tanaka, An introduction to the theory of BCK-algebra, Mathematica Japonica 23 (1978), pp. 1–26.
Google Scholar
[13] J. Kühr, Pseudo BCK-semilattices, Demonstratio Mathematica 40 (2007), pp. 495–516.
Google Scholar
[14] A. Walendziak, Pseudo-BCH-algebras, Discussiones Mathematicae – General Algebra and Applications 35 (2015), pp. 1–15.
Google Scholar
[15] A. Walendziak, On ideals of pseudo-BCH-algebras, Annales Universitatis Mariae Curie-Skłodowska, Sectio A, Mathematica, 70 (2016), pp. 81–91.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Bulletin of the Section of Logic
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.