The Infinite-Valued Łukasiewicz Logic and Probability

Authors

  • Janusz Czelakowski Opole University, Institute of Mathematics ans Informarics

DOI:

https://doi.org/10.18778/0138-0680.46.1.2.05

Keywords:

probability, cumulative distribution function, the infinite-valued standard Łukasiewicz algebra, consequence relation

Abstract

The paper concerns the algebraic structure of the set of cumulative distribution functions as well as the relationship between the resulting algebra and the infinite-valued Łukasiewicz algebra. The paper also discusses interrelations holding between the logical systems determined by the above algebras.

References

[1] P. Billingsley, Probability and Measure, John Wiley & Sons, Inc., New York, NY, 1995.
Google Scholar

[2] R. L. O. Cignoli, I. M. L. D’Ottaviano, D. Mundici, Algebraic Foundations of Many-valued Reasoning, Kluwer, Dordrecht, 2000.
Google Scholar

[3] P. Cintula, P. H ájek and Ch. Noguera (eds.), Handbook of Mathematical Fuzzy Logic (Studies in Logic, Volumes 37-38), College Publications, London, 2011.
Google Scholar

[4] J. Czelakowski, O probabilistycznej interpretacji predykatw (Polish), [in:] [5].
Google Scholar

[5] A. Wójtowicz and J. Golińska-Pilarek (eds.), Identyczność znaku czy znak identyczności? (Identity of Sign or the Sign of Identity?),Warsaw University Press, Warsaw, 2012.
Google Scholar

[6] J. Czelakowski, Probabilistic Interpretations of Predicates, [in:] Katalin Bimbó (ed.), J. Michael Dunn on Information Based Logics (Outstanding Contributions to Logic, Volume 8), Springer, Berlin, 2016, pp. 247–278.
Google Scholar

[7] J. M. Dunn and G. M. Hardegree, Algebraic Methods in Philosophical Logic (Oxford Logic Guides, Oxford Science Publications, Volume 41), Oxford University Press, New York, 2001.
Google Scholar

[8] J. M. Font, Taking degrees of truth seriously, Studia Logica 91 (2009), pp. 383–406.
Google Scholar

[9] J.M. Font, J. Gil, A. Torrens V. and Verdú, On the infinite-valued ukasiewicz logic that preserves the degrees of truth, Archiv for Mathematical Logic 45/7 (2006), pp. 839–868.
Google Scholar

[10] J. M. Font and R. Jansana, Leibniz filters and the strong version of a protoalgebraic logic, Archiv for Mathematical Logic 40 (2001), pp. 437–465.
Google Scholar

[11] B. Ganter, G. Stumme, R. Wille, (eds.), Formal Concept Analysis: Foundations and Applications (Lecture Notes in Artificial Intelligence, No. 3626), Springer-Verlag, Berlin 2005.
Google Scholar

[12] P. Hájek, Metamathematics of Fuzzy Logics, Kluwer, Dordrecht, 1998.
Google Scholar

[13] G. Malinowski, Many-Valued Logics, Clarendon Press, Oxford, 1993.
Google Scholar

[14] Y. Shramko and H. Wansing, Truth and Falsehood. An Inquiry into Generalized Logical Values (Trends in Logic, Volume 36), Springer, Berlin, 2011.
Google Scholar

[15] R. Wójcicki, Theory of Logical Calculi. Basic Theory of Consequence Operations, Kluwer, Dordrecht, 1988.
Google Scholar

[16] R. Wójcicki and G. Malinowski, (eds.), Selected Papers on Łukasiewicz Sentential Calculi, Ossolineum, Wrocław, 1977.
Google Scholar

Downloads

Published

2017-06-30

How to Cite

Czelakowski, J. (2017). The Infinite-Valued Łukasiewicz Logic and Probability. Bulletin of the Section of Logic, 46(1/2), 47–64. https://doi.org/10.18778/0138-0680.46.1.2.05

Issue

Section

Research Article