On Generalization of Modular Lattices

Authors

DOI:

https://doi.org/10.18778/0138-0680.2025.15

Keywords:

modular lattice, hollow dimension, Kurosh-Ore dimension

Abstract

We introduce the concepts of dually balanced lattices and \(M\)-lattices and provide some basic properties of these classes of lattices. Both classes can be viewed as generalizations of the well-known class of modular lattices. In particular, we obtain analogues of the Kurosh-Ore theorem for dually balanced lattices and the Jordan-Hölder theorem for \(M\)-lattices. Furthermore, we investigate the behaviour of several invariants, including the hollow dimension and the Kurosh-Ore dimension in dually balanced lattices, as well as the maximal dimension in \(M\)-lattices.

References

C. Bagiński, A. Stocka, Finite groups with L-free lattices of subgroups,Illinois Journal of Mathematics, vol. 52 (2008), pp. 887–900, DOI: https://doi.org/10.1215/ijm/1254403720
Google Scholar DOI: https://doi.org/10.1215/ijm/1254403720

G. Birkhoff, Lattice theory, American Mathematical Society (AMS), RI, Providence (1967).
Google Scholar

E. Detomi, A. Lucchini, Maximal subgroups of finite soluble groups in general position, Annali di Matematica Pura ed Applicata, vol. 195 (2016), pp. 1177–1183, DOI: https://doi.org/10.1007/s10231-015-0510-2
Google Scholar DOI: https://doi.org/10.1007/s10231-015-0510-2

R. Fernando, On an inequality of dimension-like invariants for finite groups (2015), arXiv:1502.00360.
Google Scholar

A. Goldie, The structure of prime rings under ascending chain conditions, Proceedings of the London Mathematical Society, vol. 8 (1958), pp. 589–608, DOI: https://doi.org/10.1112/plms/s3-8.4.589
Google Scholar DOI: https://doi.org/10.1112/plms/s3-8.4.589

G. Grätzer, General lattice theory, Birkhäuser, Basel (2003).
Google Scholar

P. Grzeszczuk, E. R. Puczyłowski, On Goldie and dual Goldie dimensions, Journal of Pure and Applied Algebra, vol. 31 (1984), pp. 47–54, DOI: https://doi.org/10.1016/0022-4049(84)90075-6
Google Scholar DOI: https://doi.org/10.1016/0022-4049(84)90075-6

P. Grzeszczuk, E. R. Puczyłowski, On infinite Goldie dimension of modular lattices and modules, Journal of Pure and Applied Algebra, vol. 35 (1985), pp. 151–155, DOI: https://doi.org/10.1016/0022-4049(85)90037-4
Google Scholar DOI: https://doi.org/10.1016/0022-4049(85)90037-4

J. Krempa, B. Terlikowska-Osłowska, On uniform dimension of lattices, [in:] Contributions to general algebra 9. Proceedings of the conference, Linz, Austria, June 1994, Hölder-Pichler-Tempsky, Wien (1994), pp. 219–230.
Google Scholar

A. Lucchini, Maximal Intersections in Finite Groups, Mediterranean Journal of Mathematics, vol. 19 (2022), p. 34, DOI: https://doi.org/10.1007/s00009-021-01961-9
Google Scholar DOI: https://doi.org/10.1007/s00009-021-01961-9

E. R. Puczyłowski, On some dimensions of modular lattices and matroids, [in:] International symposium on ring theory. Proceedings of the 3rd Korea-China-Japan international symposium, held jointly with the 2nd Korea-Japan joint ring theory seminar, Kyongju, Korea, June 28–July 3, 1999, Boston, MA: Birkhäuser (2001), pp. 303–312.
Google Scholar DOI: https://doi.org/10.1007/978-1-4612-0181-6_22

K. Reuter, The Kurosh-Ore exchange property, Acta Mathematica Hungarica, vol. 53 (1989), pp. 119–127, DOI: https://doi.org/10.1007/BF02170062
Google Scholar DOI: https://doi.org/10.1007/BF02170062

B. Stenstrom, Radicals and socles of lattices, Archiv der Mathematik, vol. 20 (1969), pp. 258–261, DOI: https://doi.org/10.1007/BF01899296
Google Scholar DOI: https://doi.org/10.1007/BF01899296

M. Stern, On radicals in lattices, Acta Scientiarum Mathematicarum, vol. 38 (1976), pp. 157–164, DOI: https://doi.org/10.2307/2372225
Google Scholar DOI: https://doi.org/10.2307/2372225

A. Stocka, Irredundant families of maximal subgroups of finite solvable groups, International Journal of Group Theory, vol. 12 (2023), pp. 163–176, DOI: https://doi.org/10.22108/IJGT.2022.130778.1751
Google Scholar

K. Varadarajan, Dual Goldie dimension, Communications in Algebra, vol. 7 (1979), pp. 565–610, DOI: https://doi.org/10.1080/00927877908822364
Google Scholar DOI: https://doi.org/10.1080/00927877908822364

A. Walendziak, Relations between some dimensions of semimodular lattices, Czechoslovak Mathematical Journal, vol. 54 (2004), pp. 73–77, DOI: https://doi.org/10.1023/B:CMAJ.0000027248.02077.50
Google Scholar DOI: https://doi.org/10.1023/B:CMAJ.0000027248.02077.50

D. J. A. Welsh, Matroid Theory, vol. 8 of London Mathematical Society Monographs, Academic Press, London, London (1976).
Google Scholar

Downloads

Published

2025-11-28

How to Cite

Stocka, A. (2025). On Generalization of Modular Lattices. Bulletin of the Section of Logic, 54(3), 447–469. https://doi.org/10.18778/0138-0680.2025.15

Issue

Section

Article