Continua of Logics Related to Intuitionistic and Minimal Logics
DOI:
https://doi.org/10.18778/0138-0680.2025.06Keywords:
intuitionistic logic, minimal logic, subminimal logic, co-minimal logic, Yankov formulaAbstract
We analyze the relationship between logics around intuitionistic logic and minimal logic. We characterize the intersection of minimal logic and co-minimal logic introduced by Vakarelov, and reformulate logics given in the previous studies by Vakarelov, Bezhanishvili, Colacito, de Jongh, Vargas, and Niki in a uniform language. We also compare the new logic with other known logics in terms of the cardinalities of logics between them. Specifically, we apply Wronski’s algebraic semantics, instead of neighborhood semantics used in the previous studies, to show the existence of continua of logics between known logics and the new logic. This result is an extension of the conventional results, and the proof is given in a simpler way.
References
N. Bezhanishvili, A. Colacito, D. de Jongh, A study of subminimal logics of negation and their modal companions, [in:] Language, Logic, and Computation 12th International Tbilisi Symposium, TbiLLC 2017, Lagodekhi, Georgia, September 18-22, 2017, Revised Selected Papers 12, Springer (2019), pp. 21–41, DOI: https://doi.org/10.1007/978-3-662-59565-7_2
Google Scholar
DOI: https://doi.org/10.1007/978-3-662-59565-7_2
A. Chagrov, M. Zakharyaschev, Modal logic, Oxford University Press (1997).
Google Scholar
DOI: https://doi.org/10.1093/oso/9780198537793.001.0001
A. Colacito, Minimal and Subminimal Logic of Negation, Master’s thesis, University of Amsterdam (2016), URL: https://eprints.illc.uva.nl/id/eprint/986
Google Scholar
A. Colacito, D. de Jongh, A. L. Vargas, Subminimal negation, Soft Computing, vol. 21 (2017), pp. 165–174, DOI: https://doi.org/10.1007/s00500-016-2391-8
Google Scholar
DOI: https://doi.org/10.1007/s00500-016-2391-8
T. Hosoi, H. Ono, Intermediate propositional logics (a survey), Journal of Tsuda College, vol. 5 (1973), pp. 67–82.
Google Scholar
I. Johansson, Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus, Compositio Mathematica, vol. 4 (1937), pp. 119–136, URL: http://eudml.org/doc/88648
Google Scholar
S. Niki, Decidable variables for constructive logics, Mathematical Logic Quarterly, vol. 66(4) (2020), pp. 484–493, DOI: https://doi.org/10.1002/malq.202000022
Google Scholar
DOI: https://doi.org/10.1002/malq.202000022
S. Niki, Subminimal logics in light of Vakarelov’s logic, Studia Logica, vol. 108(5) (2020), pp. 967–987, DOI: https://doi.org/10.1007/s11225-019-09884-z
Google Scholar
DOI: https://doi.org/10.1007/s11225-019-09884-z
H. Ono, On some intuitionistic modal logics, Publications of the Research Institute for Mathematical Sciences, vol. 13(3) (1977), pp. 687–722.
Google Scholar
DOI: https://doi.org/10.2977/prims/1195189604
N. Suzuki, The existence of 2ω logics lacking the weakening rule below the intuitionistic logic, Reports on Mathematical Logic, vol. 21 (1987), pp. 85–95.
Google Scholar
M. Takano, A Syntactical Study of the Subminimal Logic with Nelson Negation, Nihonkai Mathematical Journal, vol. 18(1–2) (2007), pp. 17–31, URL: https://projecteuclid.org/journals/nihonkai-mathematical-journal/volume-18/issue-1-2/A-Syntactical-Study-of-the-Subminimal-Logic-with-Nelson-Negation/nihmj/1273587757.full
Google Scholar
D. Vakarelov, Consistency, Completeness and Negation, [in:] G. Priest, R. Routley, J. Norman (eds.), Paraconsistent Logic: Essays on the inconsistent, Philosophia Verlag (1989), pp. 328–363.
Google Scholar
DOI: https://doi.org/10.2307/j.ctv2x8v8c7.15
D. Vakarelov, Nelson’s negation on the base of weaker versions of intuitionistic negation, Studia Logica, vol. 80 (2005), pp. 393–430, DOI: https://doi.org/10.1007/s11225-005-8476-5
Google Scholar
DOI: https://doi.org/10.1007/s11225-005-8476-5
P. W. Woodruff, A note on JP, Theoria, vol. 36 (2008), pp. 183–184, URL: https://api.semanticscholar.org/CorpusID:145545536
Google Scholar
DOI: https://doi.org/10.1111/j.1755-2567.1970.tb00419.x
A. Wroński, The degree of completeness of some fragments of the intuitionistic propositional logic, Reports on Mathematical Logic, vol. 2 (1974).
Google Scholar
V. Yankov, On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures, Doklady Akademii Nauk SSSR, vol. 151(6) (1963), pp. 1293–1294.
Google Scholar
V. Yankov, The construction of a sequence of strongly independent superintuitionistic propositional calculi, Doklady Akademii Nauk SSSR, vol. 181 (1968), pp. 33–34.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Funding data
-
Japan Science and Technology Corporation
Grant numbers JPMJSP2114




