Continua of Logics Related to Intuitionistic and Minimal Logics

Authors

  • Kaito Ichikura Tohoku University, Graduate School of Information Sciences image/svg+xml

DOI:

https://doi.org/10.18778/0138-0680.2025.06

Keywords:

intuitionistic logic, minimal logic, subminimal logic, co-minimal logic, Yankov formula

Abstract

We analyze the relationship between logics around intuitionistic logic and minimal logic. We characterize the intersection of minimal logic and co-minimal logic introduced by Vakarelov, and reformulate logics given in the previous studies by Vakarelov, Bezhanishvili, Colacito, de Jongh, Vargas, and Niki in a uniform language. We also compare the new logic with other known logics in terms of the cardinalities of logics between them. Specifically, we apply Wronski’s algebraic semantics, instead of neighborhood semantics used in the previous studies, to show the existence of continua of logics between known logics and the new logic. This result is an extension of the conventional results, and the proof is given in a simpler way.

References

N. Bezhanishvili, A. Colacito, D. de Jongh, A study of subminimal logics of negation and their modal companions, [in:] Language, Logic, and Computation 12th International Tbilisi Symposium, TbiLLC 2017, Lagodekhi, Georgia, September 18-22, 2017, Revised Selected Papers 12, Springer (2019), pp. 21–41, DOI: https://doi.org/10.1007/978-3-662-59565-7_2
Google Scholar DOI: https://doi.org/10.1007/978-3-662-59565-7_2

A. Chagrov, M. Zakharyaschev, Modal logic, Oxford University Press (1997).
Google Scholar DOI: https://doi.org/10.1093/oso/9780198537793.001.0001

A. Colacito, Minimal and Subminimal Logic of Negation, Master’s thesis, University of Amsterdam (2016), URL: https://eprints.illc.uva.nl/id/eprint/986
Google Scholar

A. Colacito, D. de Jongh, A. L. Vargas, Subminimal negation, Soft Computing, vol. 21 (2017), pp. 165–174, DOI: https://doi.org/10.1007/s00500-016-2391-8
Google Scholar DOI: https://doi.org/10.1007/s00500-016-2391-8

T. Hosoi, H. Ono, Intermediate propositional logics (a survey), Journal of Tsuda College, vol. 5 (1973), pp. 67–82.
Google Scholar

I. Johansson, Der Minimalkalkül, ein reduzierter intuitionistischer Formalismus, Compositio Mathematica, vol. 4 (1937), pp. 119–136, URL: http://eudml.org/doc/88648
Google Scholar

S. Niki, Decidable variables for constructive logics, Mathematical Logic Quarterly, vol. 66(4) (2020), pp. 484–493, DOI: https://doi.org/10.1002/malq.202000022
Google Scholar DOI: https://doi.org/10.1002/malq.202000022

S. Niki, Subminimal logics in light of Vakarelov’s logic, Studia Logica, vol. 108(5) (2020), pp. 967–987, DOI: https://doi.org/10.1007/s11225-019-09884-z
Google Scholar DOI: https://doi.org/10.1007/s11225-019-09884-z

H. Ono, On some intuitionistic modal logics, Publications of the Research Institute for Mathematical Sciences, vol. 13(3) (1977), pp. 687–722.
Google Scholar DOI: https://doi.org/10.2977/prims/1195189604

N. Suzuki, The existence of 2ω logics lacking the weakening rule below the intuitionistic logic, Reports on Mathematical Logic, vol. 21 (1987), pp. 85–95.
Google Scholar

M. Takano, A Syntactical Study of the Subminimal Logic with Nelson Negation, Nihonkai Mathematical Journal, vol. 18(1–2) (2007), pp. 17–31, URL: https://projecteuclid.org/journals/nihonkai-mathematical-journal/volume-18/issue-1-2/A-Syntactical-Study-of-the-Subminimal-Logic-with-Nelson-Negation/nihmj/1273587757.full
Google Scholar

D. Vakarelov, Consistency, Completeness and Negation, [in:] G. Priest, R. Routley, J. Norman (eds.), Paraconsistent Logic: Essays on the inconsistent, Philosophia Verlag (1989), pp. 328–363.
Google Scholar DOI: https://doi.org/10.2307/j.ctv2x8v8c7.15

D. Vakarelov, Nelson’s negation on the base of weaker versions of intuitionistic negation, Studia Logica, vol. 80 (2005), pp. 393–430, DOI: https://doi.org/10.1007/s11225-005-8476-5
Google Scholar DOI: https://doi.org/10.1007/s11225-005-8476-5

P. W. Woodruff, A note on JP, Theoria, vol. 36 (2008), pp. 183–184, URL: https://api.semanticscholar.org/CorpusID:145545536
Google Scholar DOI: https://doi.org/10.1111/j.1755-2567.1970.tb00419.x

A. Wroński, The degree of completeness of some fragments of the intuitionistic propositional logic, Reports on Mathematical Logic, vol. 2 (1974).
Google Scholar

V. Yankov, On the relation between deducibility in intuitionistic propositional calculus and finite implicative structures, Doklady Akademii Nauk SSSR, vol. 151(6) (1963), pp. 1293–1294.
Google Scholar

V. Yankov, The construction of a sequence of strongly independent superintuitionistic propositional calculi, Doklady Akademii Nauk SSSR, vol. 181 (1968), pp. 33–34.
Google Scholar

Downloads

Published

2025-07-07

How to Cite

Ichikura, K. (2025). Continua of Logics Related to Intuitionistic and Minimal Logics. Bulletin of the Section of Logic, 54(2), 283–323. https://doi.org/10.18778/0138-0680.2025.06

Issue

Section

Article

Funding data