D-complete Single Axioms for the Equivalential Calculus with the rules D and R
DOI:
https://doi.org/10.18778/0138-0680.2024.15Keywords:
equivalential calculus, D-complete, single axiom, condensed detachmentAbstract
Ulrich showed that most of the known axiomatisations of the classical equivalence calculus (EC) are D-incomplete, that is, they are not complete with the condensed detachment rule (D) as the primary rule of the proof procedure. He proved that the axiomatisation EEpEqrErEqp, EEEpppp by Wajsberg is D-complete and pointed out a number of D-complete single axioms, including one organic single axiom. In this paper we present new single axioms for EC with the condensed detachment and the reversed condensed detachment rules that form D-complete bases and are organic.
References
M. Alizadeh, N. Joharizadeh, Counting weak Heyting algebras on finite distributive lattices, Logic Journal of the IGPL, vol. 23(2) (2015), pp. 247–258, DOI: https://doi.org/10.1093/jigpal/jzu033
Google Scholar
DOI: https://doi.org/10.1093/jigpal/jzu033
M. Ardeshir, W. Ruitenburg, Basic propositional calculus I, Mathematical Logic Quarterly, vol. 44(3) (1998), pp. 317–343, DOI: https://doi.org/10.1002/malq.19980440304
Google Scholar
DOI: https://doi.org/10.1002/malq.19980440304
G. Birkhoff, Lattice theory, vol. 25, American Mathematical Soc. (1940).
Google Scholar
DOI: https://doi.org/10.1090/coll/025
S. Celani, R. Jansana, Bounded distributive lattices with strict implication, Mathematical Logic Quarterly, vol. 51(3) (2005), pp. 219–246, DOI: https://doi.org/10.1002/malq.200410022
Google Scholar
DOI: https://doi.org/10.1002/malq.200410022
I. Chajda, Weakly regular lattices, Mathematica Slovaca, vol. 35(4) (1985), pp. 387–391.
Google Scholar
I. Chajda, Congruence kernels in weakly regular varieties, Southeast Asian Bulletin of Mathematics, vol. 24 (2000), pp. 15–18, DOI: https://doi.org/10.1007/s10012-000-0015-8
Google Scholar
DOI: https://doi.org/10.1007/s100120070022
P. Dehornoy, Braids and self-distributivity, vol. 192, Birkhäuser (2012), DOI: https://doi.org/10.1007/978-3-0348-8442-6
Google Scholar
DOI: https://doi.org/10.1007/978-3-0348-8442-6
A. Diego, Sur les algebras de Hilbert, Ed. Herman, Collection de Logique Mathématique. Serie A, vol. 21 (1966).
Google Scholar
G. Epstein, A. Horn, Logics which are characterized by subresiduated lattices, Mathematical Logic Quarterly, vol. 22(1) (1976), pp. 199–210, DOI: https://doi.org/10.1002/malq.19760220128
Google Scholar
DOI: https://doi.org/10.1002/malq.19760220128
S. Ghorbani, MULTIPLIERS IN WEAK HEYTING ALGEBRAS, Journal of Mahani Mathematics Research, vol. 13(3) (2024), pp. 33–46, DOI: https://doi.org/10.22103/jmmr.2024.22758.1563
Google Scholar
D. Joyce, A classifying invariant of knots, the knot quandle, Journal of Pure and Applied Algebra, vol. 23(1) (1982), pp. 37–65, DOI: https://doi.org/10.1016/0022-4049(82)90077-9
Google Scholar
DOI: https://doi.org/10.1016/0022-4049(82)90077-9
H. Junji, Congruence relations and congruence classes in lattices, Osaka Mathematical Journal, vol. 15(1) (1963), pp. 71–86.
Google Scholar
M. Nourany, S. Ghorbani, A. B. Saeid, On self-distributive weak Heyting algebras, Mathematical Logic Quarterly, vol. 69(2) (2023), pp. 192–206, DOI: https://doi.org/10.1002/malq.202200073
Google Scholar
DOI: https://doi.org/10.1002/malq.202200073
H. J. San Martín, Compatible operations on commutative weak residuated lattices, Algebra universalis, vol. 73 (2015), pp. 143–155, DOI: https://doi.org/10.1007/s00012-015-0317-4
Google Scholar
DOI: https://doi.org/10.1007/s00012-015-0317-4
H. J. San Martín, Principal congruences in weak Heyting algebras, Algebra universalis, vol. 75 (2016), pp. 405–418, DOI: https://doi.org/10.1007/s00012-016-0381-4
Google Scholar
DOI: https://doi.org/10.1007/s00012-016-0381-4
H. J. San Martín, On congruences in weak implicative semi-lattices, Soft Computing, vol. 21 (2017), pp. 3167–3176, DOI: https://doi.org/10.1007/s00500-016-2188-9
Google Scholar
DOI: https://doi.org/10.1007/s00500-016-2188-9
A. Visser, A propositional logic with explicit fixed points, Studia Logica, (1981), pp. 155–175, DOI: https://doi.org/10.1007/BF01874706
Google Scholar
DOI: https://doi.org/10.1007/BF01874706
J. R. Hindley, BCK and BCI logics, condensed detachment and the 2-property, Notre Dame Journal of Formal Logic, vol. 34(2) (1993), pp. 231–250, DOI: https://doi.org/10.1305/ndjfl/1093634655
Google Scholar
DOI: https://doi.org/10.1305/ndjfl/1093634655
J. R. Hindley, D. Meredith, Principal Type-Schemes and Condensed Detachment, The Journal of Symbolic Logic, vol. 55(1) (1990), pp. 90–105, URL: http://www.jstor.org/stable/2274956
Google Scholar
DOI: https://doi.org/10.2307/2274956
K. Hodgson, Shortest Single Axioms for the Equivalential Calculus with CD and RCD, Journal of Automated Reasoning, (20) (1998), p. 283–316, DOI: https://doi.org/10.1023/A:1005731217123
Google Scholar
DOI: https://doi.org/10.1023/A:1005731217123
J. A. Kalman, Condensed Detachment as a Rule of Inference, Studia Logica, vol. 42(4) (1983), pp. 443–451, DOI: https://doi.org/10.1007/bf01371632
Google Scholar
DOI: https://doi.org/10.1007/BF01371632
S. Leśniewski, Grundzüge eines neuen Systems der Grundlagen der Mathematik, Fundamenta Mathematicae, vol. 14(1) (1929), pp. 1–81.
Google Scholar
DOI: https://doi.org/10.4064/fm-14-1-1-81
C. A. Meredith, A. N. Prior, Notes on the axiomatics of the propositional calculus, Notre Dame Journal of Formal Logic, vol. 4(3) (1963), pp. 171–187, DOI: https://doi.org/10.1305/ndjfl/1093957574
Google Scholar
DOI: https://doi.org/10.1305/ndjfl/1093957574
J. G. Peterson, Shortest single axioms for the classical equivalential calculus, Notre Dame Journal of Formal Logic, vol. 17(2) (1976), pp. 267–271, DOI: https://doi.org/10.1305/ndjfl/1093887534
Google Scholar
DOI: https://doi.org/10.1305/ndjfl/1093887534
J. A. Robinson, A Machine-Oriented Logic Based on the Resolution Principle, Journal of the ACM, vol. 12(1) (1965), pp. 23–41, DOI: https://doi.org/10.1145/321250.321253
Google Scholar
DOI: https://doi.org/10.1145/321250.321253
D. Ulrich, D-complete axioms for the classical equivalential calculus, Bulletin of the Section of Logic, vol. 34 (2005), pp. 135–142.
Google Scholar
M. Wajsberg, Metalogische Beiträge, Wiadomości Matematyczne, vol. 43 (1937), pp. 131–168.
Google Scholar
L. Wos, D. Ulrich, B. Fitelson, XCB, The last of the shortest single axioms for the classical equivalential calculus, Bulletin of the Section of Logic, vol. 3(32) (2003), pp. 131–136.
Google Scholar
J. Łukasiewicz, Równoważnościowy rachunek zdań, [in:] J. Łukasiewicz (1961) (ed.), Z zagadnień Logiki i Filozofii, Państwowe Wydawnictwo Naukowe, Warszawa (1939), pp. 234–235.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.