Open Filters and Congruence Relations on Self-Distributive Weak Heyting Algebras

Authors

DOI:

https://doi.org/10.18778/0138-0680.2024.13

Keywords:

SDWH-algebra, open filter, deductive system, congruence kernel, weakly regular

Abstract

In this paper, we study (open) filters and deductive systems of self-distributive weak Heyting algebras (SDWH-algebras) and obtain some results which determine the relationship between them. We show that the variety of SDWH-algebras is not weakly regular and every open filter is the kernel of at least one congruence relation. Finally, we characterize those SDWH-algebras which are weakly regular by using some properties involving principal congruence relations.

References

M. Alizadeh, N. Joharizadeh, Counting weak Heyting algebras on finite distributive lattices, Logic Journal of the IGPL, vol. 23(2) (2015), pp. 247–258, DOI: https://doi.org/10.1093/jigpal/jzu033
Google Scholar DOI: https://doi.org/10.1093/jigpal/jzu033

M. Ardeshir, W. Ruitenburg, Basic propositional calculus I, Mathematical Logic Quarterly, vol. 44(3) (1998), pp. 317–343, DOI: https://doi.org/10.1002/malq.19980440304
Google Scholar DOI: https://doi.org/10.1002/malq.19980440304

G. Birkhoff, Lattice theory, vol. 25, American Mathematical Soc. (1940).
Google Scholar DOI: https://doi.org/10.1090/coll/025

S. Celani, R. Jansana, Bounded distributive lattices with strict implication, Mathematical Logic Quarterly, vol. 51(3) (2005), pp. 219–246, DOI: https://doi.org/10.1002/malq.200410022
Google Scholar DOI: https://doi.org/10.1002/malq.200410022

I. Chajda, Weakly regular lattices, Mathematica Slovaca, vol. 35(4) (1985), pp. 387–391.
Google Scholar

I. Chajda, Congruence kernels in weakly regular varieties, Southeast Asian Bulletin of Mathematics, vol. 24 (2000), pp. 15–18, DOI: https://doi.org/10.1007/s10012-000-0015-8
Google Scholar DOI: https://doi.org/10.1007/s100120070022

P. Dehornoy, Braids and self-distributivity, vol. 192, Birkhäuser (2012), DOI: https://doi.org/10.1007/978-3-0348-8442-6.
Google Scholar DOI: https://doi.org/10.1007/978-3-0348-8442-6

A. Diego, Sur les algebras de Hilbert, Ed. Herman, Collection de Logique Mathématique. Serie A, vol. 21 (1966).
Google Scholar

G. Epstein, A. Horn, Logics which are characterized by subresiduated lattices, Mathematical Logic Quarterly, vol. 22(1) (1976), pp. 199–210, DOI: https://doi.org/10.1002/malq.19760220128
Google Scholar DOI: https://doi.org/10.1002/malq.19760220128

S. Ghorbani, MULTIPLIERS IN WEAK HEYTING ALGEBRAS, Journal of Mahani Mathematics Research, vol. 13(3) (2024), pp. 33–46, DOI: https://doi.org/10.22103/jmmr.2024.22758.1563
Google Scholar

D. Joyce, A classifying invariant of knots, the knot quandle, Journal of Pure and Applied Algebra, vol. 23(1) (1982), pp. 37–65, DOI: https://doi.org/10.1016/0022-4049(82)90077-9
Google Scholar DOI: https://doi.org/10.1016/0022-4049(82)90077-9

H. Junji, Congruence relations and congruence classes in lattices, Osaka Mathematical Journal, vol. 15(1) (1963), pp. 71–86.
Google Scholar

M. Nourany, S. Ghorbani, A. B. Saeid, On self-distributive weak Heyting algebras, Mathematical Logic Quarterly, vol. 69(2) (2023), pp. 192–206, DOI: https://doi.org/10.1002/malq.202200073
Google Scholar DOI: https://doi.org/10.1002/malq.202200073

H. J. San Martín, Compatible operations on commutative weak residuated lattices, Algebra universalis, vol. 73 (2015), pp. 143–155, DOI: https://doi.org/10.1007/s00012-015-0317-4
Google Scholar DOI: https://doi.org/10.1007/s00012-015-0317-4

H. J. San Martín, Principal congruences in weak Heyting algebras, Algebra universalis, vol. 75 (2016), pp. 405–418, DOI: https://doi.org/10.1007/s00012-016-0381-4
Google Scholar DOI: https://doi.org/10.1007/s00012-016-0381-4

H. J. San Martín, On congruences in weak implicative semi-lattices, Soft Computing, vol. 21 (2017), pp. 3167–3176, DOI: https://doi.org/10.1007/s00500-016-2188-9
Google Scholar DOI: https://doi.org/10.1007/s00500-016-2188-9

A. Visser, A propositional logic with explicit fixed points, Studia Logica, (1981), pp. 155–175, DOI: https://doi.org/10.1007/BF01874706
Google Scholar DOI: https://doi.org/10.1007/BF01874706

Downloads

Published

2024-06-21

How to Cite

Nourany, M., Ghorbani, S., & Borumand Saeid, A. (2024). Open Filters and Congruence Relations on Self-Distributive Weak Heyting Algebras. Bulletin of the Section of Logic, 53(4), 455–477. https://doi.org/10.18778/0138-0680.2024.13

Issue

Section

Article

Most read articles by the same author(s)