Open Filters and Congruence Relations on Self-Distributive Weak Heyting Algebras
DOI:
https://doi.org/10.18778/0138-0680.2024.13Keywords:
SDWH-algebra, open filter, deductive system, congruence kernel, weakly regularAbstract
In this paper, we study (open) filters and deductive systems of self-distributive weak Heyting algebras (SDWH-algebras) and obtain some results which determine the relationship between them. We show that the variety of SDWH-algebras is not weakly regular and every open filter is the kernel of at least one congruence relation. Finally, we characterize those SDWH-algebras which are weakly regular by using some properties involving principal congruence relations.
References
M. Alizadeh, N. Joharizadeh, Counting weak Heyting algebras on finite distributive lattices, Logic Journal of the IGPL, vol. 23(2) (2015), pp. 247–258, DOI: https://doi.org/10.1093/jigpal/jzu033
Google Scholar
DOI: https://doi.org/10.1093/jigpal/jzu033
M. Ardeshir, W. Ruitenburg, Basic propositional calculus I, Mathematical Logic Quarterly, vol. 44(3) (1998), pp. 317–343, DOI: https://doi.org/10.1002/malq.19980440304
Google Scholar
DOI: https://doi.org/10.1002/malq.19980440304
G. Birkhoff, Lattice theory, vol. 25, American Mathematical Soc. (1940).
Google Scholar
DOI: https://doi.org/10.1090/coll/025
S. Celani, R. Jansana, Bounded distributive lattices with strict implication, Mathematical Logic Quarterly, vol. 51(3) (2005), pp. 219–246, DOI: https://doi.org/10.1002/malq.200410022
Google Scholar
DOI: https://doi.org/10.1002/malq.200410022
I. Chajda, Weakly regular lattices, Mathematica Slovaca, vol. 35(4) (1985), pp. 387–391.
Google Scholar
I. Chajda, Congruence kernels in weakly regular varieties, Southeast Asian Bulletin of Mathematics, vol. 24 (2000), pp. 15–18, DOI: https://doi.org/10.1007/s10012-000-0015-8
Google Scholar
DOI: https://doi.org/10.1007/s100120070022
P. Dehornoy, Braids and self-distributivity, vol. 192, Birkhäuser (2012), DOI: https://doi.org/10.1007/978-3-0348-8442-6.
Google Scholar
DOI: https://doi.org/10.1007/978-3-0348-8442-6
A. Diego, Sur les algebras de Hilbert, Ed. Herman, Collection de Logique Mathématique. Serie A, vol. 21 (1966).
Google Scholar
G. Epstein, A. Horn, Logics which are characterized by subresiduated lattices, Mathematical Logic Quarterly, vol. 22(1) (1976), pp. 199–210, DOI: https://doi.org/10.1002/malq.19760220128
Google Scholar
DOI: https://doi.org/10.1002/malq.19760220128
S. Ghorbani, MULTIPLIERS IN WEAK HEYTING ALGEBRAS, Journal of Mahani Mathematics Research, vol. 13(3) (2024), pp. 33–46, DOI: https://doi.org/10.22103/jmmr.2024.22758.1563
Google Scholar
D. Joyce, A classifying invariant of knots, the knot quandle, Journal of Pure and Applied Algebra, vol. 23(1) (1982), pp. 37–65, DOI: https://doi.org/10.1016/0022-4049(82)90077-9
Google Scholar
DOI: https://doi.org/10.1016/0022-4049(82)90077-9
H. Junji, Congruence relations and congruence classes in lattices, Osaka Mathematical Journal, vol. 15(1) (1963), pp. 71–86.
Google Scholar
M. Nourany, S. Ghorbani, A. B. Saeid, On self-distributive weak Heyting algebras, Mathematical Logic Quarterly, vol. 69(2) (2023), pp. 192–206, DOI: https://doi.org/10.1002/malq.202200073
Google Scholar
DOI: https://doi.org/10.1002/malq.202200073
H. J. San Martín, Compatible operations on commutative weak residuated lattices, Algebra universalis, vol. 73 (2015), pp. 143–155, DOI: https://doi.org/10.1007/s00012-015-0317-4
Google Scholar
DOI: https://doi.org/10.1007/s00012-015-0317-4
H. J. San Martín, Principal congruences in weak Heyting algebras, Algebra universalis, vol. 75 (2016), pp. 405–418, DOI: https://doi.org/10.1007/s00012-016-0381-4
Google Scholar
DOI: https://doi.org/10.1007/s00012-016-0381-4
H. J. San Martín, On congruences in weak implicative semi-lattices, Soft Computing, vol. 21 (2017), pp. 3167–3176, DOI: https://doi.org/10.1007/s00500-016-2188-9
Google Scholar
DOI: https://doi.org/10.1007/s00500-016-2188-9
A. Visser, A propositional logic with explicit fixed points, Studia Logica, (1981), pp. 155–175, DOI: https://doi.org/10.1007/BF01874706
Google Scholar
DOI: https://doi.org/10.1007/BF01874706
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.