Tense Polyadic N × M-Valued Łukasiewicz–Moisil Algebras

Authors

  • Aldo V. Figallo Instituto de Ciencias Basicas, Universidad Nacional de San Juan, 5400 San Juan, Argentina Juan image/svg+xml
  • Gustavo Pelaitay Departamento de Matematica, Universidad Nacional de San Juan, 5400 San Juan, Argentina; Instituto de Ciencias Basicas; Universidad Nacional de San Juan, 5400 San Juan, Argentina Universidad Nacional del Sur, 8000 Bahıa Blanca, Argentina image/svg+xml

DOI:

https://doi.org/10.18778/0138-0680.44.3.4.05

Abstract

In 2015, A.V. Figallo and G. Pelaitay introduced tense n×m-valued Łukasiewicz–Moisil algebras, as a common generalization of tense Boolean algebras and tense n-valued Łukasiewicz–Moisil algebras. Here we initiate an investigation into the class tpLMn×m of tense polyadic n × m-valued Łukasiewicz–Moisil algebras. These algebras constitute a generalization of tense polyadic Boolean algebras introduced by Georgescu in 1979, as well as the tense polyadic n-valued Łukasiewicz–Moisil algebras studied by Chiriţă in 2012. Our main result is a representation theorem for tense polyadic n × m-valued Łukasiewicz–Moisil algebras.

References

Boicescu V., Filipoiu A., Georgescu G., Rudeanu S., Łukasiewicz-Moisil Algebras, Annals of Discrete Mathematics 49 (1991), North-Holland.
Google Scholar

Botur M., Chajda I., Halaš R., Kolařik M., Tense operators on Basic Algebras, Internat. J. Theoret. Phys. 50/12 (2011), pp. 3737–3749.
Google Scholar DOI: https://doi.org/10.1007/s10773-011-0748-4

Botur M., Paseka J., On tense MV-algebras, Fuzzy Sets and Systems 259 (2015), pp. 111–125.
Google Scholar DOI: https://doi.org/10.1016/j.fss.2014.06.006

Burges J., Basic tense logic, [in:] Gabbay, D.M., Günter F., (eds.) Handbook of Philosophical Logic II, Reidel, Dordrecht (1984), pp. 89–139.
Google Scholar DOI: https://doi.org/10.1007/978-94-009-6259-0_2

Chajda I., Paseka J., Dynamic effect algebras and their representations, Soft Computing 16/10 (2012), pp. 1733–1741.
Google Scholar DOI: https://doi.org/10.1007/s00500-012-0857-x

Chajda I., Kolařik M., Dynamic Effect Algebras, Math. Slovaca 62/3 (2012), pp. 379–388.
Google Scholar DOI: https://doi.org/10.2478/s12175-012-0015-z

Chiriţă C., Tense θ-valued Moisil propositional logic, Int. J. of Computers, Communications and Control 5 (2010). pp. 642–653.
Google Scholar DOI: https://doi.org/10.15837/ijccc.2010.5.2220

Chiriţă C., Tense θ–valued Łukasiewicz-Moisil algebras, J. Mult. Valued Logic Soft Comput. 17/1 (2011), pp. 1–24.
Google Scholar

Chiriţă C., Polyadic tense θ-valued Łukasiewicz-Moisil algebras, Soft Computing 16/6 (2012), pp. 979–987.
Google Scholar DOI: https://doi.org/10.1007/s00500-011-0796-y

Chiriţă C., Tense Multiple-valued Logical systems, PhD Thesis, University of Bucharest, Bucharest (2012).
Google Scholar

Diaconescu D., Georgescu G., Tense operators on MV-algebras and Łukasiewicz-Moisil algebras, Fund. Inform. 81/4 (2007), pp. 379–408. [12]
Google Scholar

Drăgulici D., Polyadic BL-algebras. A representation theorem, J. Mult.-Valued Logic Soft Comput. 16, no. 3–5 (2010), pp. 265–302.
Google Scholar

Figallo A. V., Sanza C., Algebras de Lukasiewicz n × m-valuadas con negación, Noticiero de la Unión Matemática Argentina 93 (2000).
Google Scholar

Figallo A. V., Sanza C., The NSn×m-propositional calculus, Bulletin of the Section of Logic 35/2(2008), pp. 67–79.
Google Scholar

Figallo A. V., Pelaitay G., Note on tense SHn-algebras, An. Univ. Craiova Ser. Mat. Inform. 38/4 (2011), pp. 24–32.
Google Scholar

Figallo A. V., Pelaitay G., Discrete duality for tense Łukasiewicz-Moisil algebras, Fund. Inform. 136/4 (2015), pp. 317–329.
Google Scholar DOI: https://doi.org/10.3233/FI-2015-1160

Figallo A. V., Sanza C., Monadic n × m-Łukasiewicz-Mosil Algebras, Mathematica Bohemica 137/4 (2012), pp. 425–447.
Google Scholar DOI: https://doi.org/10.21136/MB.2012.142998

Figallo A. V., Pelaitay G., n × m-valued Łukasiewicz–Moisil algebras with two modal operators, South American Journal of Logic 1/1 (2015), pp. 267–281.
Google Scholar

Figallo A. V., Pelaitay G., A representation theorem for tense n × m-valued Łukasiewicz-Moisil algebras, Mathematica Bohemica 140/3 (2015), pp. 345–360.
Google Scholar DOI: https://doi.org/10.21136/MB.2015.144400

Georgescu G., Vraciu C., Algebre Boole monadice şi algebre Łukasiewicz monadice, Studii Cerc. Mat. 23/7 (1971), pp. 1025–1048.
Google Scholar

Georgescu G., A representation theorem for tense polyadic algebras, Mathematica, Tome 21 (44), 2 (1979), pp. 131–138.
Google Scholar

Halmos P. R., Algebraic logic, Chelsea, New York, (1962).
Google Scholar

Rachunek J., Šalounová D., Monadic GMV-algebras, Archive for Mathematical Logic 47, 3, 277, (2008).
Google Scholar DOI: https://doi.org/10.1007/s00153-008-0086-2

Moisil Gr. C., Essais sur les logiques non Chrysippiennes, Ed. Academiei Bucarest, 1972.
Google Scholar

Monk J. D., Polyadic Heyting algebras, Notices Amer. Math. Soc., 7, 735, (1966).
Google Scholar

Paseka J., Operators on MV-algebras and their representations, Fuzzy Sets and Systems 232 (2013), pp. 62–73.
Google Scholar DOI: https://doi.org/10.1016/j.fss.2013.02.010

Sanza C., Notes on n × m-valued Łukasiewicz algebras with negation, L. J. of the IGPL 6/12 (2004), pp. 499–507.
Google Scholar DOI: https://doi.org/10.1093/jigpal/12.6.499

Sanza C., n × m-valued Łukasiewicz algebras with negation, Rep. Math. Logic 40 (2006), pp. 83–106.
Google Scholar

Sanza C., On n × m-valued Łukasiewicz-Moisil algebras, Cent. Eur. J. Math. 6/3 (2008), pp. 372–383.
Google Scholar DOI: https://doi.org/10.2478/s11533-008-0035-7

Schwartz D., Theorie der polyadischen MV-Algebren endlicher Ordnung, Math. Nachr. 78 (1977), pp. 131–138.
Google Scholar DOI: https://doi.org/10.1002/mana.19770780111

Suchoń W., Matrix Łukasiewicz Algebras, Rep. on Math. Logic 4 (1975), pp. 91–104.
Google Scholar

Downloads

Published

2015-01-01

How to Cite

Figallo, A. V., & Pelaitay, G. (2015). Tense Polyadic N × M-Valued Łukasiewicz–Moisil Algebras. Bulletin of the Section of Logic, 44(3/4), 155–181. https://doi.org/10.18778/0138-0680.44.3.4.05

Issue

Section

Article