Tense Polyadic N × M-Valued Łukasiewicz–Moisil Algebras
DOI:
https://doi.org/10.18778/0138-0680.44.3.4.05Abstract
In 2015, A.V. Figallo and G. Pelaitay introduced tense n×m-valued Łukasiewicz–Moisil algebras, as a common generalization of tense Boolean algebras and tense n-valued Łukasiewicz–Moisil algebras. Here we initiate an investigation into the class tpLMn×m of tense polyadic n × m-valued Łukasiewicz–Moisil algebras. These algebras constitute a generalization of tense polyadic Boolean algebras introduced by Georgescu in 1979, as well as the tense polyadic n-valued Łukasiewicz–Moisil algebras studied by Chiriţă in 2012. Our main result is a representation theorem for tense polyadic n × m-valued Łukasiewicz–Moisil algebras.
References
Boicescu V., Filipoiu A., Georgescu G., Rudeanu S., Łukasiewicz-Moisil Algebras, Annals of Discrete Mathematics 49 (1991), North-Holland.
Google Scholar
Botur M., Chajda I., Halaš R., Kolařik M., Tense operators on Basic Algebras, Internat. J. Theoret. Phys. 50/12 (2011), pp. 3737–3749.
Google Scholar
DOI: https://doi.org/10.1007/s10773-011-0748-4
Botur M., Paseka J., On tense MV-algebras, Fuzzy Sets and Systems 259 (2015), pp. 111–125.
Google Scholar
DOI: https://doi.org/10.1016/j.fss.2014.06.006
Burges J., Basic tense logic, [in:] Gabbay, D.M., Günter F., (eds.) Handbook of Philosophical Logic II, Reidel, Dordrecht (1984), pp. 89–139.
Google Scholar
DOI: https://doi.org/10.1007/978-94-009-6259-0_2
Chajda I., Paseka J., Dynamic effect algebras and their representations, Soft Computing 16/10 (2012), pp. 1733–1741.
Google Scholar
DOI: https://doi.org/10.1007/s00500-012-0857-x
Chajda I., Kolařik M., Dynamic Effect Algebras, Math. Slovaca 62/3 (2012), pp. 379–388.
Google Scholar
DOI: https://doi.org/10.2478/s12175-012-0015-z
Chiriţă C., Tense θ-valued Moisil propositional logic, Int. J. of Computers, Communications and Control 5 (2010). pp. 642–653.
Google Scholar
DOI: https://doi.org/10.15837/ijccc.2010.5.2220
Chiriţă C., Tense θ–valued Łukasiewicz-Moisil algebras, J. Mult. Valued Logic Soft Comput. 17/1 (2011), pp. 1–24.
Google Scholar
Chiriţă C., Polyadic tense θ-valued Łukasiewicz-Moisil algebras, Soft Computing 16/6 (2012), pp. 979–987.
Google Scholar
DOI: https://doi.org/10.1007/s00500-011-0796-y
Chiriţă C., Tense Multiple-valued Logical systems, PhD Thesis, University of Bucharest, Bucharest (2012).
Google Scholar
Diaconescu D., Georgescu G., Tense operators on MV-algebras and Łukasiewicz-Moisil algebras, Fund. Inform. 81/4 (2007), pp. 379–408. [12]
Google Scholar
Drăgulici D., Polyadic BL-algebras. A representation theorem, J. Mult.-Valued Logic Soft Comput. 16, no. 3–5 (2010), pp. 265–302.
Google Scholar
Figallo A. V., Sanza C., Algebras de Lukasiewicz n × m-valuadas con negación, Noticiero de la Unión Matemática Argentina 93 (2000).
Google Scholar
Figallo A. V., Sanza C., The NSn×m-propositional calculus, Bulletin of the Section of Logic 35/2(2008), pp. 67–79.
Google Scholar
Figallo A. V., Pelaitay G., Note on tense SHn-algebras, An. Univ. Craiova Ser. Mat. Inform. 38/4 (2011), pp. 24–32.
Google Scholar
Figallo A. V., Pelaitay G., Discrete duality for tense Łukasiewicz-Moisil algebras, Fund. Inform. 136/4 (2015), pp. 317–329.
Google Scholar
DOI: https://doi.org/10.3233/FI-2015-1160
Figallo A. V., Sanza C., Monadic n × m-Łukasiewicz-Mosil Algebras, Mathematica Bohemica 137/4 (2012), pp. 425–447.
Google Scholar
DOI: https://doi.org/10.21136/MB.2012.142998
Figallo A. V., Pelaitay G., n × m-valued Łukasiewicz–Moisil algebras with two modal operators, South American Journal of Logic 1/1 (2015), pp. 267–281.
Google Scholar
Figallo A. V., Pelaitay G., A representation theorem for tense n × m-valued Łukasiewicz-Moisil algebras, Mathematica Bohemica 140/3 (2015), pp. 345–360.
Google Scholar
DOI: https://doi.org/10.21136/MB.2015.144400
Georgescu G., Vraciu C., Algebre Boole monadice şi algebre Łukasiewicz monadice, Studii Cerc. Mat. 23/7 (1971), pp. 1025–1048.
Google Scholar
Georgescu G., A representation theorem for tense polyadic algebras, Mathematica, Tome 21 (44), 2 (1979), pp. 131–138.
Google Scholar
Halmos P. R., Algebraic logic, Chelsea, New York, (1962).
Google Scholar
Rachunek J., Šalounová D., Monadic GMV-algebras, Archive for Mathematical Logic 47, 3, 277, (2008).
Google Scholar
DOI: https://doi.org/10.1007/s00153-008-0086-2
Moisil Gr. C., Essais sur les logiques non Chrysippiennes, Ed. Academiei Bucarest, 1972.
Google Scholar
Monk J. D., Polyadic Heyting algebras, Notices Amer. Math. Soc., 7, 735, (1966).
Google Scholar
Paseka J., Operators on MV-algebras and their representations, Fuzzy Sets and Systems 232 (2013), pp. 62–73.
Google Scholar
DOI: https://doi.org/10.1016/j.fss.2013.02.010
Sanza C., Notes on n × m-valued Łukasiewicz algebras with negation, L. J. of the IGPL 6/12 (2004), pp. 499–507.
Google Scholar
DOI: https://doi.org/10.1093/jigpal/12.6.499
Sanza C., n × m-valued Łukasiewicz algebras with negation, Rep. Math. Logic 40 (2006), pp. 83–106.
Google Scholar
Sanza C., On n × m-valued Łukasiewicz-Moisil algebras, Cent. Eur. J. Math. 6/3 (2008), pp. 372–383.
Google Scholar
DOI: https://doi.org/10.2478/s11533-008-0035-7
Schwartz D., Theorie der polyadischen MV-Algebren endlicher Ordnung, Math. Nachr. 78 (1977), pp. 131–138.
Google Scholar
DOI: https://doi.org/10.1002/mana.19770780111
Suchoń W., Matrix Łukasiewicz Algebras, Rep. on Math. Logic 4 (1975), pp. 91–104.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Funding data
-
Consejo Nacional de Investigaciones Científicas y Técnicas
Grant numbers unknown