A Short and Readable Proof of Cut Elimination for Two First-Order Modal Logics
DOI:
https://doi.org/10.18778/0138-0680.44.3.4.03Keywords:
Modal logic, GL, QGL, first-order logic, proof theory, cut elimination, cut admissibility, provability logicAbstract
A well established technique toward developing the proof theory of a Hilbert-style modal logic is to introduce a Gentzen-style equivalent (a Gentzenisation), then develop the proof theory of the latter, and finally transfer the metatheoretical results to the original logic (e.g., [1, 6, 8, 18, 10, 12]). In the first-order modal case, on one hand we know that the Gentzenisation of the straightforward first-order extension of GL, the logic QGL, admits no cut elimination (if the rule is included as primitive; or, if not included, then the rule is not admissible [1]). On the other hand the (cut-free) Gentzenisations of the first-order modal logics M3 and ML3 of [10, 12] do have cut as an admissible rule. The syntactic cut admissibility proof given in [18] for the Gentzenisation of the propositional provability logic GL is extremely complex, and it was the basis of the proofs of cut admissibility of the Gentzenisations of M3 and ML3, where the presence of quantifiers and quantifier rules added to the complexity and length of the proof. A recent proof of cut admissibility in a cut-free Gentzenisation of GL is given in [5] and is quite short and easy to read. We adapt it here to revisit the proofs for the cases of M3 and ML3, resulting to similarly short and easy to read proofs, only slightly complicated by the presence of quantification and its relevant rules.
References
Avron A., On modal systems having arithmetical interpretations, J. of Symb. Logic 49, no. 3 (1984), pp. 935–942.
Google Scholar
DOI: https://doi.org/10.2307/2274147
Barwise J. (ed.), Handbook of Mathematical Logic, North-Holland, Amsterdam, 1978.
Google Scholar
Boolos G., The Logic of Provability, Cambridge University Press, Cambridge, 1993.
Google Scholar
DOI: https://doi.org/10.1017/CBO9780511625183
Bourbaki N., Éléments de Mathématique; Théorie des Ensembles, Hermann, Paris, 1966.
Google Scholar
Brighton J., Cut Elimination for GLS Using the Terminability of its Regress Process, DOI 10.1007/s10992-015-9368-4, March 2015.
Google Scholar
DOI: https://doi.org/10.1007/s10992-015-9368-4
Leivant D., On the proof theory of the modal logic for arithmetic provability, Journal of Symbolic Logic 46, no. 3 (1981), pp. 531–538.
Google Scholar
DOI: https://doi.org/10.2307/2273755
Montagna F., The predicate modal logic of provability, Notre Dame J. of Formal Logic 25 (1984), pp. 179–189.
Google Scholar
DOI: https://doi.org/10.1305/ndjfl/1093870577
Sambin G., Valentini S., The Modal Logic of Provability. The Sequential Approach, Journal of Philosophical Logic 11, no. 3 (1982), pp. 311–342.
Google Scholar
DOI: https://doi.org/10.1007/BF00293433
Schütte K., Proof Theory, Springer-Verlag, New York, 1977.
Google Scholar
DOI: https://doi.org/10.1007/978-3-642-66473-1
Schwartz Y., Tourlakis G., On the proof-theory of two formalisations of modal first-order logic, Studia Logica 96, no. 3 (2010), pp. 349–373.
Google Scholar
DOI: https://doi.org/10.1007/s11225-010-9294-y
Schwartz Y., Tourlakis G., A Proof Theoretic Tool for First-Order Modal Logic, Bulletin of the Section of Logic 42:3/4 (2013), pp. 93–110.
Google Scholar
Schwartz Y., Tourlakis G., On the Proof-Theory of a First-Order Version of GL, Logic and Logical Philosophy (LLP) 23, no. 3 (2014), pp. 329–363.
Google Scholar
Schwichtenberg H., Proof theory: Some applications of cut-elimination, in Barwise [2], pp. 867–895.
Google Scholar
DOI: https://doi.org/10.1016/S0049-237X(08)71124-8
Solovay R., Provability Interpretations of Modal Logics, Israel Journal of Mathematics 25 (1976), pp. 287–304.
Google Scholar
DOI: https://doi.org/10.1007/BF02757006
Tourlakis G., Some metatheoretical results about first-order modal logics, Submitted (In refereeing), October 2015.
Google Scholar
Tourlakis G., Kibedi F., A modal extension of first order classical logic – Part I, Bulletin of the Section of Logic 32:4 (2003), pp. 165–178.
Google Scholar
Tourlakis G., Kibedi F., A modal extension of first order classical logic – Part II, Bulletin of the Section of Logic 33:1 (2004), pp. 1–10.
Google Scholar
Valentini S., The Modal Logic of Provability: Cut-Elimination, Journal of Philosophical Logic 12, no. 4 (1983), pp. 471–476.
Google Scholar
DOI: https://doi.org/10.1007/BF00249262
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.