Non-Fregean Logics of Analytic Equivalence (I)
DOI:
https://doi.org/10.18778/0138-0680.44.1.2.06Abstract
The identity connective is usually interpreted in non-Fregean logic as an operator representing the identity of situations. This interpretation is related to the modal criterion of the identity of sentence correlates, characteristic of the WT system and some stronger systems. However, this connective can also be interpreted in a different way – as an operator representing the identity of propositions. The “propositional” interpretation is in turn associated with the modal-contents criterion of the identity of sentence correlates. This begs the question of whether there is a system of non-Fregean logic, providing an adequate formalization of this criterion. The aim of the paper is to systematize the metalogical and philosophical context of the issue and to point to a system that provides its solution.
References
Barwise J., Perry J., Semantic innocence and uncompromising situations, Midwest Studies in Philosophy 6 (1981), pp. 387–404.
Google Scholar
DOI: https://doi.org/10.1111/j.1475-4975.1981.tb00447.x
Barwise J., Perry J., Situations and Attitudes, MIT Press 1983.
Google Scholar
Biłat A., Zasada Wittgensteina a logika niefregowska (in Polish: Wittgenstein’s principle versus non-Fregean logic), [in:] M. Omyła (ed.), Szkice z semantyki i ontologii sytuacji, BMS series, Warszawa 1991, pp. 63–68.
Google Scholar
Biłat A., O pewnym kryterium tożsamości sądów (in Polish: On a criterion of propositional identity), [in:] W. Krysztofiak, H. Perkowska (eds.), Szkice z fenomenologii i filozofii analitycznej, Wyd. Naukowe USz, Szczecin 1993, pp. 81–85.
Google Scholar
Golińska-Pilarek J., On the minimal non-Fregean Grzegorczyk logic, submitted to Studia Logica, 2015.
Google Scholar
DOI: https://doi.org/10.1007/s11225-015-9635-y
Golińska-Pilarek J., Huuskonen T., Grzegorczyk’s non-Fregean logics, [in:] The Road Less Travelled, Off-stream applications of formal methods. Proceedings of Trends in Logic XIV, Ghent University, Belgium, 2014.
Google Scholar
Krysztofiak W., Co wyraża argument slingshot? (in Polish: What does express the slingshot argument?), [in:] A. Biłat (ed.), Aporie ontologii sytuacji, Wyd. UMCS, Lublin 2009, pp. 37-73.
Google Scholar
Nowak M., Formalna reprezentacja pojęcia sądu. Dla zastosowań w teorii aktów mowy (in Polish: A formal representation of the concept of proposition. For application in speech act theory), Wydawnictwo UŁ, Łódź 2003.
Google Scholar
Nowak M., The logics of analytic equivalence, Bulletin of the Section of Logic 37:3/4 (2008), pp. 265–72; available on Internet (August 2014): http://www.filozof.uni.lodz.pl/bulletin/pdf/37_34_11.pdf.
Google Scholar
Nowak M., Vanderveken D., A complete minima logic of the propositional content of thought, Studia Logica 54 (1995), pp. 391–410.
Google Scholar
DOI: https://doi.org/10.1007/BF01053006
Omyła M., Zarys logiki niefregowskiej (in Polish: Outline of non-Fregean logic), PWN, Warszawa 1986.
Google Scholar
Suszko R., Identity connective and modality, Studia Logica 27 (1971), pp. 7–39.
Google Scholar
DOI: https://doi.org/10.1007/BF02282541
Wittgenstein L., Tractatus logico-philosophicus, Routledge, London – New York 1974.
Google Scholar
Wolniewicz B., Rzeczy i fakty. Wstęp do pierwszej filozofii Wittgensteina (in Polish: Things and facts. Introduction to the first philosophy of Wittgenstein), PWN, Warszawa 1968.
Google Scholar
Wolniewicz B., Ontologia sytuacji. Podstawy i zastosowania (in Polish: Ontology of situations. Basis and applications), PWN, Warszawa 1985.
Google Scholar
Wolniewicz B., Z dziejów logicznej semantyki zdań (in Polish: A history of logical semantics of sentences), Studia Filozoficzne 5-6 (1985), pp. 23–34.
Google Scholar
Wójcicki R., R. Suszko’s situational semantics, Studia Logica 43 (1984), pp. 323–340.
Google Scholar
DOI: https://doi.org/10.1007/BF00370505
Wójcicki R., Situational semantics for non-Fregean logic, The Journal of Non-Classical Logic, Vol. 3, No 1 (1986), pp. 33–67.
Google Scholar
Vanderveken D., Nowak M., An algebraic analysis of the logical form of propositions, Logique et Analyse 141-2 (1993), pp. 135–48.
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.