The Cardinal Squaring Principle and an Alternative Axiomatization of NFU
DOI:
https://doi.org/10.18778/0138-0680.2023.25Keywords:
Quine's New Foundations, cardinal multiplication, axiomatizationAbstract
In this paper, we rigorously prove the existence of type-level ordered pairs in Quine’s New Foundations with atoms, augmented by the axiom of infinity and the axiom of choice (NFU + Inf + AC). The proof uses the cardinal squaring principle; more precisely, its instance for the (infinite) universe (VCSP), which is a theorem of NFU + Inf + AC. Therefore, we have a justification for proposing a new axiomatic extension of NFU, in order to obtain type-level ordered pairs almost from the beginning. This axiomatic extension is NFU + Inf + AC + VCSP, which is equivalent to NFU + Inf + AC, but easier to reason about.
References
T. Adlešić, V. Čačić, A Modern Rigorous Approach to Stratification in NF/NFU, Logica Universalis, vol. 16(3) (2022), pp. 451–468, DOI: https://doi.org/10.1007/s11787-022-00310-y
Google Scholar
DOI: https://doi.org/10.1007/s11787-022-00310-y
H. B. Enderton, Elements of set theory, Academic press (1977), DOI: https://doi.org/https://doi.org/10.1016/C2009-0-22079-4
Google Scholar
DOI: https://doi.org/10.1016/C2009-0-22079-4
H. B. Enderton, A Mathematical Introduction to Logic, Academic Press (2001).
Google Scholar
DOI: https://doi.org/10.1016/B978-0-08-049646-7.50005-9
M. J. Gabbay, Consistency of Quine’s New Foundations (2014), DOI: https://doi.org/10.48550/ARXIV.1406.4060
Google Scholar
M. R. Holmes, Systems of combinatory logic related to Quine’s ‘New Foundations’, Annals of Pure and Applied Logic, vol. 53(2) (1991), pp. 103–133, DOI: https://doi.org/10.1016/0168-0072(91)90052-N
Google Scholar
DOI: https://doi.org/10.1016/0168-0072(91)90052-N
M. R. Holmes, The set-theoretical program of Quine succeeded, but nobody noticed, Modern Logic, (1994).
Google Scholar
M. R. Holmes, Elementary set theory with a universal set, https://randall-holmes.github.io/head.pdf (1998).
Google Scholar
M. R. Holmes, A new pass at the NF consistency proof, https://randall-holmes.github.io/Nfproof/newattempt.pdf (2020).
Google Scholar
M. R. Holmes, Proof, Sets, and Logic, https://randall-holmes.github.io/proofsetslogic.pdf (2021).
Google Scholar
M. R. Holmes, F. E. Forster, T. Libert, Alternative Set Theories., Sets and extensions in the twentieth century, vol. 6 (2012), pp. 559–632.
Google Scholar
DOI: https://doi.org/10.1016/B978-0-444-51621-3.50008-6
R. B. Jensen, On the consistency of a slight (?) modification of Quine’s New Foundations, [in:] J. Hintikka (ed.), Words and objections: Essays on the Work of W. V. Quine, Springer (1969), pp. 278–291.
Google Scholar
DOI: https://doi.org/10.1007/978-94-010-1709-1_16
W. V. Quine, New foundations for mathematical logic, The American mathematical monthly, (1937), DOI: https://doi.org/10.2307/2267377
Google Scholar
DOI: https://doi.org/10.1080/00029890.1937.11987928
J. B. Rosser, Logic for mathematicians, Dover Publications (2008), DOI: https://doi.org/10.2307/2273431
Google Scholar
DOI: https://doi.org/10.2307/2273431
G. Wagemakers, New Foundations—A survey of Quine’s set theory, Master’s thesis, Instituut voor Tall, Logica en Informatie Publication Series, X-89-02 (1989).
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Funding data
-
Hrvatska Zaklada za Znanost
Grant numbers UIP-2017-05-9219 (FORMALS).