Elementary Proof of Strong Normalization for Atomic F

Authors

  • Fernando Ferreira Universidade de Lisboa, Faculdade de Ciências, Departamento de Matemática
  • Gilda Ferreira Universidade Lusófona de Humanidades e Tecnologias, Departamento de Matemática

DOI:

https://doi.org/10.18778/0138-0680.45.1.01

Keywords:

Predicative polymorphism, strong normalization, elementary proofs, lambda-calculus

Abstract

We give an elementary proof (in the sense that it is formalizable in Peano arithmetic) of the strong normalization of the atomic polymorphic calculus Fat (a predicative restriction of Girard’s system F).

References

[1] T. Altenkirch and T. Coquand, A finitary subsystem of the polymorphic λ-calculus, Proceedings of the 5th International Conference on Typed Lambda Calculi and Applications (TLCA 2001), Lecture Notes in Computer Science 2044 (2001), pp. 22–28.
Google Scholar

A. Beckmann, Exact bounds for lenghts of reductions in typed λ-calculus, The Journal of Symbolic Logic 66(3) (2001), pp. 1277–1285.
Google Scholar

F. Ferreira, A simple proof of Parsons’ theorem, Notre Dame Journal of Formal Logic 46 (2005), pp. 83–91.
Google Scholar

F. Ferreira, Comments on predicative logic, Journal of Philosophical Logic 35 (2006), pp. 1–8.
Google Scholar

F. Ferreira and G. Ferreira, Atomic polymorphism, The Journal of Symbolic Logic 78 (2013), pp. 260–274.
Google Scholar

F. Ferreira and G. Ferreira, The faithfulness of Fat : a proof-theoretic proof, Studia Logica 103(6) (2015), pp. 1303–1311.
Google Scholar

J.-Y. Girard, Y. Lafont and P. Taylor, Proofs and Types, Cambridge University Press (1989).
Google Scholar

F. Joachimski and R. Matthes, Short proofs of normalization for the simplytyped lambda-calculus, permutative conversions and Gödel’s T, Archive for Mathematical Logic 42 (2003), pp. 59–87.
Google Scholar

H. Schwichtenberg, An upper bound for reduction sequences in the typed λ-calculus, Archive for Mathematical Logic 30 (1991), pp. 405–408.
Google Scholar

W. Tait, Intentional interpretations of functionals of finite type I, The Journal of Symbolic Logic 32 (1967), pp. 198–212.
Google Scholar

W. Tait, Finitism, Journal of Philosophy 78 (1981), pp. 524–546.
Google Scholar

A. S. Troelstra and H. Schwichtenberg, Basic Proof Theory, Cambridge University Press (1996).
Google Scholar

A. S. Troelstra and D. van Dalen, Constructivism in Mathematics. An Introduction, volume 1, North Holland, Amsterdam (1988).
Google Scholar

J. van de Pol, Two different strong normalization proofs? Computability versus functionals of finite type, Proceedings of the Second International Workshop on Higher-Order Algebra, Logic and Term Rewriting (HOA’95), Lecture Notes in Computer Science 1074 (1996), pp. 201–220.
Google Scholar

F. van Raamsdonk and P. Severi, On normalization, Technical report CSR9545, Centrum voor Wiskunde en Informatica, Amsterdam (1995).
Google Scholar

Downloads

Published

2016-03-30

How to Cite

Ferreira, F., & Ferreira, G. (2016). Elementary Proof of Strong Normalization for Atomic F. Bulletin of the Section of Logic, 45(1), 1–15. https://doi.org/10.18778/0138-0680.45.1.01

Issue

Section

Research Article