Linear Abelian Modal Logic

Authors

DOI:

https://doi.org/10.18778/0138-0680.2023.30

Keywords:

many-valued logic, modal logic, abelian logic, hypersequent calculus, cut-elimination

Abstract

A many-valued modal logic, called linear abelian modal logic \(\rm {\mathbf{LK(A)}}\) is introduced as an extension of the abelian modal logic \(\rm \mathbf{K(A)}\). Abelian modal logic \(\rm \mathbf{K(A)}\) is the minimal modal extension of the logic of lattice-ordered abelian groups. The logic \(\rm \mathbf{LK(A)}\) is axiomatized by extending \(\rm \mathbf{K(A)}\) with the modal axiom schemas \(\Box(\varphi\vee\psi)\rightarrow(\Box\varphi\vee\Box\psi)\) and \((\Box\varphi\wedge\Box\psi)\rightarrow\Box(\varphi\wedge\psi)\). Completeness theorem with respect to algebraic semantics and a hypersequent calculus admitting cut-elimination are established. Finally, the correspondence between hypersequent calculi and axiomatization is investigated.

References

A. Avron, Hypersequents, logical consequence and intermediate logics for concurrency, Annals of Mathematics and Artificial Intelligence, vol. 4(3) (1991), pp. 225–248, DOI: https://doi.org/10.1007/BF01531058
Google Scholar DOI: https://doi.org/10.1007/BF01531058

F. Baader, S. Borgwardt, R. Penaloza, Decidability and complexity of fuzzy description logics, KI-Künstliche Intelligenz, vol. 31(1) (2017), pp. 85–90, DOI: https://doi.org/10.1007/s13218-016-0459-3
Google Scholar DOI: https://doi.org/10.1007/s13218-016-0459-3

S. Baratella, Continuous propositional modal logic, Journal of Applied Non-Classical Logics, vol. 28(4) (2018), pp. 297–312, DOI: https://doi.org/10.1080/11663081.2018.1468677
Google Scholar DOI: https://doi.org/10.1080/11663081.2018.1468677

E. Casari, Comparative logics and Abelian l-groups, [in:] Studies in Logic and the Foundations of Mathematics, vol. 127, Elsevier (1989), pp. 161–190, DOI: https://doi.org/https://doi.org/10.1016/S0049-237X(08)70269-6
Google Scholar DOI: https://doi.org/10.1016/S0049-237X(08)70269-6

A. Ciabattoni, G. Metcalfe, F. Montagna, Adding modalities to MTL and its extensions, [in:] Proceedings of the Linz Symposium, vol. 2005, Citeseer (2005).
Google Scholar

A. Ciabattoni, G. Metcalfe, F. Montagna, Algebraic and proof-theoretic characterizations of truth stressers for MTL and its extensions, Fuzzy Sets and Systems, vol. 161(3) (2010), pp. 369–389, DOI: https://doi.org/10.1016/j.fss.2009.09.001
Google Scholar DOI: https://doi.org/10.1016/j.fss.2009.09.001

P. Cintula, Weakly implicative (fuzzy) logics I: Basic properties, Archive for Mathematical Logic, vol. 45(6) (2006), pp. 673–704, DOI: https://doi.org/10.1007/s00153-006-0011-5
Google Scholar DOI: https://doi.org/10.1007/s00153-006-0011-5

P. Cintula, C. Noguera, A general framework for mathematical fuzzy logic, [in:] P. Cintula, P. Hajek, C. Noguera (eds.), Handbook of Mathematical Fuzzy Logic, vol. 1, College publications, London (2011), pp. 103–207.
Google Scholar

D. Diaconescu, G. Georgescu, Tense operators on MV-algebras and Łukasiewicz-Moisil algebras, Fundamenta Informaticae, vol. 81(4) (2007), pp. 379–408.
Google Scholar

D. Diaconescu, G. Metcalfe, L. Schnüriger, A Real-Valued Modal Logic, Logical Methods in Computer Science, vol. Volume 14, Issue 1 (2018), DOI: https://doi.org/10.23638/LMCS-14(1:10)2018
Google Scholar

T. Flaminio, L. Godo, E. Marchioni, Logics for belief functions on MV-algebras, International Journal of Approximate Reasoning, vol. 54(4) (2013), pp. 491–512, DOI: https://doi.org/10.1016/j.ijar.2012.08.006
Google Scholar DOI: https://doi.org/10.1016/j.ijar.2012.08.006

T. Flaminio, F. Montagna, MV-algebras with internal states and probabilistic fuzzy logics, International Journal of Approximate Reasoning, vol. 50(1) (2009), pp. 138–152, DOI: https://doi.org/10.1016/j.ijar.2008.07.006
Google Scholar DOI: https://doi.org/10.1016/j.ijar.2008.07.006

L. Godo, P. Hájek, F. Esteva, A fuzzy modal logic for belief functions, Fundamenta Informaticae, vol. 57(2-4) (2003), pp. 127–146.
Google Scholar

L. Godo, R. O. Rodrı́guez, A fuzzy modal logic for similarity reasoning, [in:] G. Chen, M. Ying, K. Cai (eds.), Fuzzy Logic and Soft Computing. The International Series on Asian Studies in Computer and Information Science, Springer, Boston, MA (1999), pp. 33–48, DOI: https://doi.org/10.1007/978-1-4615-5261-1_3
Google Scholar DOI: https://doi.org/10.1007/978-1-4615-5261-1_3

P. Hájek, Making fuzzy description logic more general, Fuzzy Sets and Systems, vol. 154(1) (2005), pp. 1–15, DOI: https://doi.org/10.1016/j.fss.2005.03.005
Google Scholar DOI: https://doi.org/10.1016/j.fss.2005.03.005

P. Hájek, D. Harmancová, R. Verbrugge, A qualitative fuzzy possibilistic logic, International Journal of Approximate Reasoning, vol. 12(1) (1995), pp. 1–19, DOI: https://doi.org/10.1016/0888-613X(94)00011-Q
Google Scholar DOI: https://doi.org/10.1016/0888-613X(94)00011-Q

G. Metcalfe, N. Olivetti, D. Gabbay, Sequent and hypersequent calculi for abelian and Łukasiewicz logics, ACM Transactions on Computational Logic (TOCL), vol. 6(3) (2005), pp. 578–613, DOI: https://doi.org/10.1145/1071596.1071600
Google Scholar DOI: https://doi.org/10.1145/1071596.1071600

G. Metcalfe, N. Olivetti, D. M. Gabbay, Proof theory for fuzzy logics, vol. 36 of Applied Logic Series, Springer, Dordrecht (2008), DOI: https://doi.org/10.1007/978-1-4020-9409-5
Google Scholar DOI: https://doi.org/10.1007/978-1-4020-9409-5

G. Metcalfe, O. Tuyt, A Monadic Logic of Ordered Abelian Groups, [in:] N. Olivetti, R. Verbrugge, S. Negri, G. Sandu (eds.), Advances in Modal Logic 13, College Publications, London (2020), pp. 441–457.
Google Scholar

R. K. Meyer, J. K. Slaney, Abelian Logic (From A to Z), [in:] G. Priest, R. Routley, J. Norman (eds.), Paracoconsistent Logic, Philosophia Verlag, Munich (1989).
Google Scholar

M. Mio, R. Mardare, R. Furber, Probabilistic logics based on Riesz spaces, Logical Methods in Computer Science, vol. 16 (2020), DOI: https://doi.org/10.23638/LMCS-16(1:6)2020
Google Scholar

M. Mio, A. Simpson, Łukasiewicz μ-calculus, Fundamenta Informaticae, vol. 150(3–4) (2017), pp. 317–346, DOI: https://doi.org/10.3233/FI-2017-1472
Google Scholar DOI: https://doi.org/10.3233/FI-2017-1472

G. Pottinger, Uniform, cut-free formulations of T, S4 and S5, Journal of Symbolic Logic, vol. 48(3) (1983), p. 900, DOI: https://doi.org/10.2307/2273495
Google Scholar DOI: https://doi.org/10.2307/2273495

U. Straccia, Reasoning within fuzzy description logics, Journal of Artificial Intelligence Research, vol. 14 (2001), pp. 137–166, DOI: https://doi.org//10.1613/jair.813
Google Scholar DOI: https://doi.org/10.1613/jair.813

Downloads

Published

2023-12-15

How to Cite

Mohammadi, H. (2023). Linear Abelian Modal Logic. Bulletin of the Section of Logic, 53(1), 1–28. https://doi.org/10.18778/0138-0680.2023.30

Issue

Section

Research Article