Categorical Dualities for Some Two Categories of Lattices: An Extended Abstract
DOI:
https://doi.org/10.18778/0138-0680.2022.14Keywords:
categorical duality, bi-algebraic lattice, bounded lattice, quasivariety latticeAbstract
The categorical dualities presented are: (first) for the category of bi-algebraic lattices that belong to the variety generated by the smallest non-modular lattice with complete (0,1)-lattice homomorphisms as morphisms, and (second) for the category of non-trivial (0,1)-lattices belonging to the same variety with (0,1)-lattice homomorphisms as morphisms. Although the two categories coincide on their finite objects, the presented dualities essentially differ mostly but not only by the fact that the duality for the second category uses topology. Using the presented dualities and some known in the literature results we prove that the Q-lattice of any non-trivial variety of (0,1)-lattices is either a 2-element chain or is uncountable and non-distributive.
References
M. E. Adams, K. V. Adaricheva, W. Dziobiak, A. V. Kravchenko, Open questions related to the problem of Birkhoff and Maltsev, Studia Logica, vol. 78 (2004), pp. 357–378, DOI: https://doi.org/10.1007/s11225-005-7378-x
Google Scholar
DOI: https://doi.org/10.1007/s11225-005-7378-x
M. E. Adams, W. Dziobiak, Finite-to-finite universal quasivarieties are Q- universal, Algebra Universalis, vol. 46 (2001), pp. 253–283, DOI: https://doi.org/10.1007/PL00000343
Google Scholar
DOI: https://doi.org/10.1007/PL00000343
M. E. Adams, W. Dziobiak, A. V. Kravchenko, M. V. Schwidefsky, Complete homomorphic images of the quasivariety lattices of locally finite quasivarieties (2020).
Google Scholar
M. E. Adams, V. Koubek, J. Sichler, Homomorphisms and endomorphisms of distributive lattices, Houston Journal of Mathematics, vol. 11 (1984), pp. 129–145, DOI: https://doi.org/10.2307/1999472
Google Scholar
DOI: https://doi.org/10.2307/1999472
W. H. Cornish, On H. Priestley’s dual of the category of bounded distributive lattices, Matematiˇcki Vesnik, vol. 12 (1975), pp. 329–332.
Google Scholar
Y. L. Ershov, Solimit points and u-extensions, Algebra and Logic, vol. 56 (2017), pp. 295–301, DOI: https://doi.org/10.1007/s10469-017-9450-9
Google Scholar
DOI: https://doi.org/10.1007/s10469-017-9450-9
Y. L. Ershov, M. V. Schwidefsky, To the spectral theory of partially ordered sets, Siberian Mathematical Journal, vol. 60 (2019), pp. 450–463, DOI: https://doi.org/10.1134/S003744661903008X
Google Scholar
DOI: https://doi.org/10.1134/S003744661903008X
Y. L. Ershov, M. V. Schwidefsky, To the spectral theory of partially ordered sets. II, Siberian Mathematical Journal, vol. 61 (2020), pp. 453—462, DOI: https://doi.org/10.1134/S0037446620030064
Google Scholar
DOI: https://doi.org/10.1134/S0037446620030064
R. Freese, J. B. Nation, J. Ježek, Free Lattices, no. 42 in Mathematical Surveys and Monographs, American Mathematical Society, Providence (1995).
Google Scholar
DOI: https://doi.org/10.1090/surv/042
P. Goralčík, V. Koubek, J. Sichler, Universal varieties of (0,1)-lattices, Canadian Journal of Mathematics, vol. 42 (1990), pp. 470–490, DOI: https://doi.org/10.4153/CJM-1990-024-0
Google Scholar
DOI: https://doi.org/10.4153/CJM-1990-024-0
V. A. Gorbunov, Algebraic Theory of Quasivarieties, Siberian School of Algebra and Logic, Plenum, Consultants Bureau, New York (1998).
Google Scholar
A. P. Huhn, Schwach distributive Verbände. I, Acta Scientiarum Mathematicarum (Szeged), vol. 33 (1972), pp. 297–305.
Google Scholar
M. A. Moshier, P. Jipsen, Topological duality and lattice expansions, I: A topological construction for canonical extensions, Algebra Universalis, vol. 71 (2014), pp. 109–126, DOI: https://doi.org/10.1007/s00012-014-0275-2
Google Scholar
DOI: https://doi.org/10.1007/s00012-014-0267-2
J. B. Nation, An approach to lattice varieties of finite height, Algebra Universalis, vol. 27 (1990), pp. 521–543, DOI: https://doi.org/10.1007/BF01188998
Google Scholar
DOI: https://doi.org/10.1007/BF01188998
H. A. Priestley, Ordered topological spaces and representation of distributive lattices, Proceedings of the London Mathematical Society, vol. 24 (1972), pp. 507–530, DOI: https://doi.org/10.1112/plms/s3-24.3.507
Google Scholar
DOI: https://doi.org/10.1112/plms/s3-24.3.507
M. H. Stone, Topological representation of distributive lattices and Brouwerian logics, Časopis pro pěstování matematiky a fysiky, vol. 67 (1938), pp. 1–25.
Google Scholar
DOI: https://doi.org/10.21136/CPMF.1938.124080
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Funding data
-
Russian Science Foundation
Grant numbers 22-21-00104