A Logic for Dually Hemimorphic Semi-Heyting Algebras and its Axiomatic Extensions
DOI:
https://doi.org/10.18778/0138-0680.2022.23Keywords:
semi-intuitionistic logic, dually hemimorphic semi-Heyting logic, dually quasi-De Morgan semi-Heyting logic, De Morgan semi-Heyting logic, dually pseudocomplemented semi-Heyting logic, regular dually quasi-De Morgan Stone semi-Heyting algebras of level 1, implicative logic, equivalent algebraic semantics, algebraizable logic, De Morgan Gödel logic, dually pseudocomplemented Gödel logic, Moisil's logic, 3-valued Łukasiewicz logicAbstract
The variety
References
M. Abad, J. M. Cornejo, J. P. Diaz Varela, The variety generated by semi-Heyting chains, Soft Computing, vol. 15(4) (2010), pp. 721–728, DOI: https://doi.org/10.1007/s00500-010-0604-0
Google Scholar
DOI: https://doi.org/10.1007/s00500-010-0604-0
M. Abad, J. M. Cornejo, J. P. Díaz Varela, The variety of semi-Heyting algebras satisfying the equation ((0to 1)sp astvee(0to 1)sp {astast}approx 1), Reports on Mathematical Logic, vol. 46 (2011), pp. 75–90.
Google Scholar
M. Abad, J. M. Cornejo, J. P. Diaz Varela, Semi-Heyting Algebras Termequivalent to Gödel Algebras, Order, vol. 30(2) (2013), pp. 625–642, DOI: https://doi.org/10.1007/s11083-012-9266-0
Google Scholar
DOI: https://doi.org/10.1007/s11083-012-9266-0
M. E. Adams, H. P. Sankappanavar, J. Vaz de Carvalho, Regular double palgebras, Mathematica Slovaca, vol. 69(1) (2019), pp. 15–34, DOI: https: //doi.org/10.1515/ms-2017-0200
Google Scholar
DOI: https://doi.org/10.1515/ms-2017-0200
M. E. Adams, H. P. Sankappanavar, J. Vaz de Carvalho, Varieties of Regular Pseudocomplemented de Morgan Algebras, Order, vol. 37(3) (2020), pp. 529–557, DOI: https://doi.org/10.1007/s11083-019-09518-y
Google Scholar
DOI: https://doi.org/10.1007/s11083-019-09518-y
W. J. Blok, D. Pigozzi, Algebraizable logics, Memoirs of the American Mathematical Society, vol. 77(396) (1989), pp. vi+78.
Google Scholar
DOI: https://doi.org/10.1090/memo/0396
S. Burris, H. P. Sankappanavar, A course in universal algebra, vol. 78 of Graduate Texts in Mathematics, Springer-Verlag, New York (1981).
Google Scholar
DOI: https://doi.org/10.1007/978-1-4613-8130-3
J. M. Cornejo, Semi-intuitionistic logic, Studia Logica, vol. 98(1–2) (2011), pp. 9–25, DOI: https://doi.org/10.1007/s11225-011-9321-7
Google Scholar
DOI: https://doi.org/10.1007/s11225-011-9321-7
J. M. Cornejo, M. Kinyon, H. P. Sankappanavar, Regular double p-algebras: A converse to a Katriňák’s theorem, and applications (2022), preprint.
Google Scholar
J. M. Cornejo, L. F. Monteiro, H. P. Sankappanavar, I. D. Viglizzo, A note on chain-based semi-Heyting algebras, Mathematical Logic Quarterly, vol. 66(4) (2020), pp. 409–417, DOI: https://doi.org/10.1002/malq.201900070
Google Scholar
DOI: https://doi.org/10.1002/malq.201900070
J. M. Cornejo, H. P. Sankappanavar, Semi-Heyting Algebras and Identities of Associative Type, Bulletin of the Section of Logic, vol. 48(2) (2019), pp. 117–135, DOI: https://doi.org/10.18778/0138-0680.48.2.03
Google Scholar
DOI: https://doi.org/10.18778/0138-0680.48.2.03
J. M. Cornejo, H. P. Sankappanavar, Connexive logics arising from semi-Heyting algebras and from dually hemimorphic semi-Heyting algebras (2022), in Preparation
Google Scholar
DOI: https://doi.org/10.18778/0138-0680.2022.23
J. M. Cornejo, I. Viglizzo, Semi-intuitionistic Logic with Strong Negation, Studia Logica, vol. 106(2) (2017), pp. 281–293, DOI: https://doi.org/10.1007/s11225-017-9737-9
Google Scholar
DOI: https://doi.org/10.1007/s11225-017-9737-9
J. M. Cornejo, I. D. Viglizzo, On Some Semi-Intuitionistic Logics, Studia Logica, vol. 103(2) (2015), pp. 303–344, DOI: https://doi.org/10.1007/s11225-014-9568-x
Google Scholar
DOI: https://doi.org/10.1007/s11225-014-9568-x
J. M. Cornejo, I. D. Viglizzo, Semi-Nelson Algebras, Order, vol. 35(1) (2018), pp. 23–45, DOI: https://doi.org/10.1007/s11083-016-9416-x
Google Scholar
DOI: https://doi.org/10.1007/s11083-016-9416-x
J. Font, Abstract Algebraic Logic. An Introductory Textbook, College Publications, Rickmansworth (2016).
Google Scholar
J. M. Font, R. Jansana, D. Pigozzi, A Survey of Abstract Algebraic Logic, Studia Logica, vol. 74(1/2) (2003), pp. 13–97, DOI: https://doi.org/10.1023/a:1024621922509
Google Scholar
DOI: https://doi.org/10.1023/A:1024621922509
T. Jarmużek, J. Malinowski, Boolean Connexive Logics: Semantics and tableau approach, Logic and Logical Philosophy, vol. 28 (2019), pp. 427–448, DOI: https://doi.org/10.12775/llp.2019.003
Google Scholar
DOI: https://doi.org/10.12775/LLP.2019.003
T. Katriňák, The structure of distributive double p-algebras. Regularity and congruences, Algebra Universalis, vol. 3(1) (1973), pp. 238–246, DOI: https://doi.org/10.1007/bf02945123
Google Scholar
DOI: https://doi.org/10.1007/BF02945123
G. Moisil, Essais sur les logiques non chrysippiennes, Éditions de l’Académie Socialiste de Roumanie (1972), URL: https://books.google.com.ar/books?id=pjjQAAAAMAAJ
Google Scholar
G. C. Moisil, Logique modale. Disquisitiones mathematicae et physicae (Bucharest), vol. 2 (1942), pp. 3–98., Journal of Symbolic Logic, vol. 13(3) (1948), pp. 162–163, DOI: https://doi.org/10.2307/2267855
Google Scholar
A. A. Monteiro, Sur les algèbres de Heyting symétriques, Portugaliae Mathematica, vol. 39(1–4) (1980), pp. 1–237, URL: https://eudml.org/doc/115416 special Issue in honor of António Monteiro.
Google Scholar
H. Rasiowa, An algebraic approach to non-classical logics, Studies in Logic and the Foundations of Mathematics, Vol. 78, North-Holland Publishing Co., Amsterdam (1974).
Google Scholar
H. P. Sankappanavar, Heyting algebras with dual pseudocomplementation, Pacific Journal of Mathematics, vol. 117(2) (1985), pp. 405–415, DOI: https://doi.org/10.2140/pjm.1985.117.405
Google Scholar
DOI: https://doi.org/10.2140/pjm.1985.117.405
H. P. Sankappanavar, Semi-Heyting algebras, Amererican Mathematical Society Abstracts, (1985), p. 13.
Google Scholar
H. P. Sankappanavar, Heyting algebras with a dual lattice endomorphism, Zeitschrift f für Mathematische Logik und Grundlagen der Mathematik, vol. 33(6) (1987), pp. 565–573, DOI: https://doi.org/10.1002/malq.19870330610
Google Scholar
DOI: https://doi.org/10.1002/malq.19870330610
H. P. Sankappanavar, Semi-De Morgan algebras, The Journal of Symbolic Logic, vol. 52(3) (1987), pp. 712–724, DOI: https://doi.org/10.2307/2274359
Google Scholar
DOI: https://doi.org/10.1017/S0022481200029716
H. P. Sankappanavar, Semi-Heyting algebras: An abstraction from Heyting algebras, Actas del Congreso “Dr. Antonio A. R. Monteiro”, [in:] Proceedings of the 9th “Dr. Antonio A. R. Monteiro” Congress (Spanish), Univ. Nac. del Sur, Bahı́a Blanca (2008), pp. 33–66.
Google Scholar
H. P. Sankappanavar, Expansions of semi-Heyting algebras I: Discriminator varieties, Studia Logica, vol. 98(1–2) (2011), pp. 27–81, DOI: https://doi.org/10.1007/s11225-011-9322-6
Google Scholar
DOI: https://doi.org/10.1007/s11225-011-9322-6
H. P. Sankappanavar, Dually quasi-De Morgan Stone semi-Heyting algebras I. Regularity, Categories and General Algebraic Structures with Applications, vol. 2(1) (2014), pp. 47–64, URL: https://cgasa.sbu.ac.ir/article_6483.html
Google Scholar
H. P. Sankappanavar, Dually quasi-De Morgan Stone semi-Heyting algebras II. Regularity, Categories and General Algebraic Structures with Applications, vol. 2(1) (2014), pp. 65–82, URL: https://cgasa.sbu.ac.ir/article_6799.html
Google Scholar
H. P. Sankappanavar, A note on regular De Morgan Stone semi-Heyting algebras, Demonstracio Mathematica, vol. 49(3) (2016), pp. 252–265, DOI: https://doi.org/10.1515/dema-2016-0021
Google Scholar
DOI: https://doi.org/10.1515/dema-2016-0021
H. P. Sankappanavar, JI-distributive dually quasi-De Morgan semi-Heyting and Heyting algebras, Scientiae Mathematicae Japonicae, vol. 82(3) (2019), pp. 245–271, DOI: https://doi.org/10.32219/isms.82.3 245
Google Scholar
H. P. Sankappanavar, De Morgan semi-Heyting and Heyting algebras, [in:] K. P. Shum, E. Zelmanov, P. Kolesnikov, S. M. Anita Wong (eds.), New Trends in Algebras and Combinatorics. Proceeding of the 3rd International Congress in Algebra and Combinatorics ICAC2017, Hong Kong, China, 25–28 August 2017 (2020), pp. 447–457, DOI: https://doi.org/10.1142/9789811215476_0024
Google Scholar
DOI: https://doi.org/10.1142/9789811215476_0024
H. P. Sankappanavar, A few historical glimpses into the interplay between algebra and logic and investigations into Gautama algebras, [in:] S. Sarukkai, M. K. Chakraborty (eds.), Handbook of Logical Thought in India, Springer, New Delhi (2022), pp. 1–75, DOI: https://doi.org/10.1007/978-81-322-2577-5_54
Google Scholar
DOI: https://doi.org/10.1007/978-81-322-1812-8_54-1
H. P. Sankappanavar, Gautama and Almost Gautama algebras and their associated logics (2022), preprint.
Google Scholar
DOI: https://doi.org/10.4204/EPTCS.358.0.1
J. Varlet, A regular variety of type (2,2,1,1,0,0), Algebra Universalis, vol. 2(1) (1972), pp. 218–223, DOI: https://doi.org/10.1007/bf02945029
Google Scholar
DOI: https://doi.org/10.1007/BF02945029
H. Wansing, Connexive Logic, [in:] E. N. Zalta (ed.), The Stanford Encyclopedia of Philosophy, Summer 2022 ed., Metaphysics Research Lab, Stanford University (2022).
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.