A 2 Set-Up Binary Routley Semantics for Gödelian 3-Valued Logic G3 and Its Paraconsistent Counterpart G3\(_\text{Ł}^\leq\)
DOI:
https://doi.org/10.18778/0138-0680.2022.20Keywords:
binary Routley semantics, 2 set-up binary Routley semantics, 3-valued logics, paraconsistent logics, Gödelian 3-valued logic G3Abstract
G3 is Gödelian 3-valued logic, G3\(_\text{Ł}^\leq\) is its paraconsistent counterpart and G3\(_\text{Ł}^1\) is a strong extension of G3\(_\text{Ł}^\leq\). The aim of this paper is to endow each one of the logics just mentioned with a 2 set-up binary Routley semantics.
References
A. Avron, Proof systems for 3-valued Logics based on Gödel’s implication, Logic Journal of the IGPL, vol. 30(3) (2021), pp. 437–453, DOI: https://doi.org/10.1093/jigpal/jzab013
Google Scholar
DOI: https://doi.org/10.1093/jigpal/jzab013
R. T. Brady, Completeness proofs for the systems RM3 and BN4, Logique et Analyse, vol. 25(97) (1982), pp. 9–32, URL: https://www.jstor.org/stable/44084001
Google Scholar
K. Gödel, Zum Intuitionistischen Aussagenkalkül, Anzeiger Der Akademie Der Wissenschaften in Wien, vol. 69 (1932), pp. 65–66.
Google Scholar
G. Robles, A Routley-Meyer semantics for Gödel 3-valued logic and its paraconsistent counterpart, Logica Universalis, vol. 7(4) (2013), pp. 507–532, DOI: https://doi.org/10.1007/s11787-013-0088-7
Google Scholar
DOI: https://doi.org/10.1007/s11787-013-0088-7
G. Robles, J. M. Blanco, S. M. López, J. R. Paradela, M. M. Recio, Relational semantics for the 4-valued relevant logics BN4 and E4, Logic and Logical Philosophy, vol. 25(2) (2016), pp. 173–201, DOI: https://doi.org/10.12775/LLP.2016.006
Google Scholar
DOI: https://doi.org/10.12775/LLP.2016.006
G. Robles, J. M. Méndez, A paraconsistent 3-valued logic related to G¨odel logic G3, Logic Journal of the IGPL, vol. 22(4) (2014), pp. 515–538, DOI: https://doi.org/10.1093/jigpal/jzt046
Google Scholar
DOI: https://doi.org/10.1093/jigpal/jzt046
G. Robles, J. M. Méndez, A binary Routley semantics for intuitionistic De Morgan minimal logic H {M} and its extensions, Logic Journal of the IGPL, vol. 23(2) (2015), pp. 174–193, DOI: https://doi.org/10.1093/jigpal/jzu029
Google Scholar
DOI: https://doi.org/10.1093/jigpal/jzu029
G. Robles, J. M. Méndez, Routley-Meyer ternary relational semantics for intuitionistic-type negations, Academic Press, Elsevier, London (2018), DOI: https://doi.org/10.1016/C2015-0-01638-0
Google Scholar
DOI: https://doi.org/10.1016/C2015-0-01638-0
G. Robles, F. Salto, J. M. Méndez, Belnap-Dunn semantics for natural implicative expansions of Kleene’s strong three-valued matrix II, Journal of Applied Non-Classical Logics, vol. 23(3) (2019), pp. 307–325, DOI: https://doi.org/10.1080/11663081.2019.1644079
Google Scholar
DOI: https://doi.org/10.1080/11663081.2019.1644079
R. Routley, R. K. Meyer, V. Plumwood, R. T. Brady, Relevant logics and their rivals, vol. 1, Ridgeview Publishing Co., Atascadero, CA (1982).
Google Scholar
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.