A 2 Set-Up Binary Routley Semantics for Gödelian 3-Valued Logic G3 and Its Paraconsistent Counterpart G3\(_\text{Ł}^\leq\)

Authors

DOI:

https://doi.org/10.18778/0138-0680.2022.20

Keywords:

binary Routley semantics, 2 set-up binary Routley semantics, 3-valued logics, paraconsistent logics, Gödelian 3-valued logic G3

Abstract

G3 is Gödelian 3-valued logic, G3\(_\text{Ł}^\leq\) is its paraconsistent counterpart and G3\(_\text{Ł}^1\) is a strong extension of G3\(_\text{Ł}^\leq\). The aim of this paper is to endow each one of the logics just mentioned with a 2 set-up binary Routley semantics.

References

A. Avron, Proof systems for 3-valued Logics based on Gödel’s implication, Logic Journal of the IGPL, vol. 30(3) (2021), pp. 437–453, DOI: https://doi.org/10.1093/jigpal/jzab013
Google Scholar DOI: https://doi.org/10.1093/jigpal/jzab013

R. T. Brady, Completeness proofs for the systems RM3 and BN4, Logique et Analyse, vol. 25(97) (1982), pp. 9–32, URL: https://www.jstor.org/stable/44084001
Google Scholar

K. Gödel, Zum Intuitionistischen Aussagenkalkül, Anzeiger Der Akademie Der Wissenschaften in Wien, vol. 69 (1932), pp. 65–66.
Google Scholar

G. Robles, A Routley-Meyer semantics for Gödel 3-valued logic and its paraconsistent counterpart, Logica Universalis, vol. 7(4) (2013), pp. 507–532, DOI: https://doi.org/10.1007/s11787-013-0088-7
Google Scholar DOI: https://doi.org/10.1007/s11787-013-0088-7

G. Robles, J. M. Blanco, S. M. López, J. R. Paradela, M. M. Recio, Relational semantics for the 4-valued relevant logics BN4 and E4, Logic and Logical Philosophy, vol. 25(2) (2016), pp. 173–201, DOI: https://doi.org/10.12775/LLP.2016.006
Google Scholar DOI: https://doi.org/10.12775/LLP.2016.006

G. Robles, J. M. Méndez, A paraconsistent 3-valued logic related to G¨odel logic G3, Logic Journal of the IGPL, vol. 22(4) (2014), pp. 515–538, DOI: https://doi.org/10.1093/jigpal/jzt046
Google Scholar DOI: https://doi.org/10.1093/jigpal/jzt046

G. Robles, J. M. Méndez, A binary Routley semantics for intuitionistic De Morgan minimal logic H {M} and its extensions, Logic Journal of the IGPL, vol. 23(2) (2015), pp. 174–193, DOI: https://doi.org/10.1093/jigpal/jzu029
Google Scholar DOI: https://doi.org/10.1093/jigpal/jzu029

G. Robles, J. M. Méndez, Routley-Meyer ternary relational semantics for intuitionistic-type negations, Academic Press, Elsevier, London (2018), DOI: https://doi.org/10.1016/C2015-0-01638-0
Google Scholar DOI: https://doi.org/10.1016/C2015-0-01638-0

G. Robles, F. Salto, J. M. Méndez, Belnap-Dunn semantics for natural implicative expansions of Kleene’s strong three-valued matrix II, Journal of Applied Non-Classical Logics, vol. 23(3) (2019), pp. 307–325, DOI: https://doi.org/10.1080/11663081.2019.1644079
Google Scholar DOI: https://doi.org/10.1080/11663081.2019.1644079

R. Routley, R. K. Meyer, V. Plumwood, R. T. Brady, Relevant logics and their rivals, vol. 1, Ridgeview Publishing Co., Atascadero, CA (1982).
Google Scholar

Downloads

Published

2022-10-14

How to Cite

Robles, G., & Méndez, J. M. (2022). A 2 Set-Up Binary Routley Semantics for Gödelian 3-Valued Logic G3 and Its Paraconsistent Counterpart G3\(_\text{Ł}^\leq\). Bulletin of the Section of Logic, 51(4), 487–505. https://doi.org/10.18778/0138-0680.2022.20

Issue

Section

Research Article

Most read articles by the same author(s)