Variability of trace element content in human tooth sequences – a multivariate analysis

Authors

  • Krzysztof Szostek Jagiellonian University, Department of Anthropology, Institute of Zoology, ul. R. Ingardena 6, 30-060 Kraków

DOI:

https://doi.org/10.18778/1898-6773.61.04

Abstract

Analyses of human bone material expand our knowledge of aspects of modern and historical population ecology, the etiology of diseases, reconstruction of historical diets, and the social and economic status of human groups. 35 adult lower jaw tooth sequences from the 17lh-century Cracow population were analysed. The skeletons were found in crypts of the medieval St. Mark’s church, following international standards. Levels of Pb, Zn, Cu and Cd were determined in undamaged permanent teeth PI, P2, Ml, M2 and M3, using anodic stripping voltammetry (ASV), while strontium concentrations were determined using AAS method. There were statistically significant differences in the levels of the analysed trace elements within the investigated tooth sequences. High interspecimen variability in the amount of accumulated microelements, probably resulting from nutritional, developmental and physiological stress, was also observed. The accumulation of Pb, Cd and Zn was the highest in M3 teeth and the lowest in M l. The results indicate that only one type of teeth should be used for intergroup and intragroup comparison of trace element content.

Downloads

Download data is not yet available.

References

Ambrose S. H., 1993, Isotopic analysis of paleodiets: methodological and interpretive considerations; [in:] Investigations of Ancient Human Tissue Chemical Analyses in Anthropology, M. K Sandford (eds.), Gordon and Breach Sc. Publ., pp. 59-130
View in Google Scholar

Appleton J., 1991, The effect of lead acetate on dentine formation in the rat, Arch. Oral Biol., 36, 377-382
View in Google Scholar DOI: https://doi.org/10.1016/0003-9969(91)90008-I

Aufderheide A. C., F. D. Neiman , L. E. Wittmers , G. Rapp, 1981, Lead in bone II: skeletal-lead content as a indicator of lifetime lead ingestion and the social correlates in an archaeological population. Am. J. Phys. Anthrop., 55, 285-291
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.1330550304

Bercovitz K., D. Laufer, 1990, Tooth type as indicator of exposure to lead of adults and children. Arch. Oral Biol., 35, 895-897
View in Google Scholar DOI: https://doi.org/10.1016/0003-9969(90)90069-M

Bercovitz K., D. Laufer, 1993, Carious teeth as indicators to lead exposure. Bull. Environ. Toxicol., 50, 724-729
View in Google Scholar DOI: https://doi.org/10.1007/BF00194668

Brothhwell D. R., 1981, Digging up Bones, Cornell University Press, Ithaca, New York
View in Google Scholar

Brockhaus A., W. Coller, R. Dolgner, 1988, Exposure to lead and cadmium of children living in different areas of North-West Germany: results of biological monitoring studies 1982-1986. Int. Arch. Occup. Environ. Health, 60, 211-222
View in Google Scholar DOI: https://doi.org/10.1007/BF00378699

Buikstra J. E., D. H. Ubelaker, 1994, Standards for Data Collection from Human Skeletal Remains, Arkansas Archaeological Survey Research Series No.44
View in Google Scholar

Burton J. H., L. E. Wright, 1995, Nonlinearity in the relationship between bone Sr/Ca and diet: paleodietary implications. Am. J. Phys. Anthrop., 96, 273-282
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.1330960305

Drasch G. V., 1982, Lead burden in prehistorical, historical and modem human bones. The Science of the Total Environment, 24, 199-231
View in Google Scholar DOI: https://doi.org/10.1016/0048-9697(82)90001-8

Edward J. B., R. A. Benfer, 1993, The effects of diagenesis on the Paloma skeletal material, [in:] Investigations of Ancient Human Tissue Chemical Analyses in Anthropology, M. K. Sandford (ed.), Gordon and Breach Sc. Publ., 183-268
View in Google Scholar

Elias R. W., 1985, Lead exposures in the human environment, [in:] Dietary and Environmental Lead: Human Health Effects, K. R. Mahaffey (ed.), Elsevier, Amsterdam, 79-109
View in Google Scholar

Evans D. R., P. Richner, P. M. Outridge, 1995, Micro-spatial variations of heavy metals in the teeth of Walrus as determined by Laser Ablation ICP-MS: the potential for reconstructing a history of metal exposure. Arch. Environ. Contam. Toxicol., 28, 55-60
View in Google Scholar DOI: https://doi.org/10.1007/BF00213969

Fornaciari G., F. Mallegni, D. Bertini, V. Nuti, 1981, Cribra orbitalia and elemental bone iron in the Punics of Cartage. Ossa, 8, 63-77
View in Google Scholar

Fullmer C. S., 1991, Intestinal calcium and lead absorption: effects of dietary lead and calcium. Environmental Research, 54, 159-169
View in Google Scholar DOI: https://doi.org/10.1016/S0013-9351(05)80098-2

Gil F., M. L. Perez, A. Facio , E. Villanueva, R. Tojo, A. Gil, 1994, Dental lead levels in the Galician population, Spain. The Science of the Total Environment, 156, 145-150
View in Google Scholar DOI: https://doi.org/10.1016/0048-9697(94)90351-4

Głąb H., K. Szostek, 1995, Variability of trace element content in permanent teeth of Macaca mulatta – Two different populations. Folia Primatol., 64, 215-217
View in Google Scholar DOI: https://doi.org/10.1159/000156856

Grupe G., 1995, Zur Aetiologie der Cribra orbitalia: Auswirkttngen auf das Aminosaureprofd im Knochenkollagen und den Eisengehaltt des Knochenminerals. Zeitschrifl für Morphologie und Anthropologie, 81, 25-137
View in Google Scholar DOI: https://doi.org/10.1127/zma/81/1995/125

Kabata-Pendias A., H. Pendias, 1989, Pierwiastki śladowe w środowisku biologicznym. Wyd. Geol., Warszawa
View in Google Scholar

Karai I., K. Fukumoto, S. Hiroguchi, 1980, Determination of blood lead by anodic stripping voltammetry. Osaka City Med. J., 26, 39-46
View in Google Scholar

Katzenberg M. A., 1992, Advances in stable isotope analysis of prehistoric bones, [in:] Skeletal Biology of Past Peoples: Research Methods, S. R. Saunders and M. A. Katzenberg (eds.), Wiley-Liss, New York, 105-121
View in Google Scholar

Keegan W. F., 1989, Stable isotope analysis of prehistoric diet, [in:] Reconstruction of Life from the Sceleton, Y. M. Iscan and Kennedy K. A. R. (eds.), Alan R. Liss, Inc., New York, 223-237
View in Google Scholar

Klepinger L. L., 1993, Culture, health and chemistry: a technological approach to discovery, [in:] Investigations of Ancient Human Tissue Chemical Analyses in Anthropology, M. K. Sandford (ed.), Gordon and Breach Sc. Publ, 167-180
View in Google Scholar

Marcsik A., F. Kosa, G. Kocis, 1992, Structure, function and evolution of teeth, [in:] Structure, Function and Evolution of Teeth, P. Smith, E. Tchernov (eds.), Freund Publishing House Ltd., London, 527-538
View in Google Scholar

Myszka M., 1996, Średniowieczne i nowożytne pochówki odkryte w Kościele św Marka w Krakowie. Państwowa Służba Ochrony Zabytków w Krakowie, Kraków
View in Google Scholar

Purchase N. G., J. E. Ferrgusson, 1986, Lead in teeth: the influence of the tooth type and the sample within a tooth on lead levels. Sci. Total. Environ., 52, 239-250
View in Google Scholar DOI: https://doi.org/10.1016/0048-9697(86)90124-5

Rothschild B. M., 1992, Advances in detecting disease in earlier human populations, [in:] Skeletal Biology of Past Peoples: Research Methods, S. R. Saunders and M. A. Katzenberg (eds.), Wiley-Liss, New York, 131-153
View in Google Scholar

Sandford M. K., 1992, A reconsideration of trace element analysis in prehistoric bone, [in:] Skeletal Biology of Past Peoples: Research Methods, S. R. Saunders and M. A. Katzenberg (eds.), Wiley-Liss, New York, 79-100
View in Google Scholar

Sandford M. K., 1993, Understanding the biogenic-diagenetic continuum: interpreting elemental concentrations of archaeological bone, [in:] Investigations of Ancient Human Tissue Chemical Analyses in Anthropology, M. K. Sandford (ed.), Gordon and Breach Sc. Publ., 3-57
View in Google Scholar

Sillen A., 1981, Strontium and diet at Hayonim Cave. Am. J. Phys. Anthrop., 56, 131-137
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.1330560204

Stuart-Macadam P. L., 1985, Porotic hyperostosis. Representative of childhood condition. Am. J. Phys. Anthrop., 66, 391-398
View in Google Scholar DOI: https://doi.org/10.1002/ajpa.1330660407

Stuart-Macadam P. L., 1989, Nutritional deficiency diseases: a survey of scurvy, rickets and iron-deficiency anemia, [in:] Reconstruction of Life from the Skeleton, Y. M. Iscan and K. A. R. Kennedy (eds.), Alan R. Liss, Inc., New York, 201-223
View in Google Scholar

Szostek K., 1992, Lead, cadmium, copper and zinc concentrations in permanent teeth in the populations of Southern Poland. Przegląd Antropologiczny, 55, 105-111
View in Google Scholar

Wang J., 1985, Stripping Analysis, Principles Instrumentation and Applications. VCH Publishers, Florida
View in Google Scholar

Wolsperger M., 1992, Trace element analysis of medieval and early modern skeletal remains from Western Austria for reconstruction of diet. Homo, 43, 278-294
View in Google Scholar

Yamamoto I., M. Itoh , S. Tsukada, 1987, Determination of cadmium, copper, zinc, and lead in human renal calculi in both cadmium polluted and non-polluted areas. Bull. Environ. Contam. Toxicol., 39, 343-349
View in Google Scholar DOI: https://doi.org/10.1007/BF01689427

Downloads

Published

1998-12-30

How to Cite

Szostek, K. (1998). Variability of trace element content in human tooth sequences – a multivariate analysis. Anthropological Review, 61, 63–74. https://doi.org/10.18778/1898-6773.61.04

Issue

Section

Articles

Most read articles by the same author(s)