Role of stable isotope analyses in reconstructing past life-histories and the provenancing human skeletal remains: a review

Authors

  • Jagmahender Singh Sehrawat Department of Anthropology, Panjab University, Chandigarh, India
  • Jaspreet Kaur Department of Anthropology, Panjab University, Chandigarh, India

DOI:

https://doi.org/10.1515/anre-2017-0017

Keywords:

Stable isotope analysis, Bones and teeth, different isotopes, life-histories, provenance of skeletal remains, forensic anthropology

Abstract

This article reviews the present scenario of use of stable isotopes (mainly δ13C, δ15N, δ18O, 87Sr) to trace past life behaviours like breast feeding and weaning practices, the geographic origin, migration history, paleodiet and subsistence patterns of past populations from the chemical signatures of isotopes imprinted in human skeletal remains. This approach is based on the state that food-web isotopic signatures are seen in the human bones and teeth and such signatures can change parallely with a variety of biogeochemical processes. By measuring δ13C and δ15N isotopic values of subadult tissues of different ages, the level of breast milk ingestion at particular ages and the components of the complementary foods can be assessed. Strontium and oxygen isotopic analyses have been used for determining the geographic origins and reconstructing the way of life of past populations as these isotopes can map the isotopic outline of the area from where the person acquired water and food during initial lifetime. The isotopic values of strontium and oxygen values are considered specific to geographical areas and serve as reliable chemical signatures of migration history of past human populations (local or non-local to the site). Previous isotopic studies show that the subsistence patterns of the past human populations underwent extensive changes from nomadic to complete agricultural dependence strategies. The carbon and nitrogen isotopic values of local fauna of any archaeological site can be used to elucidate the prominence of freshwater resources in the diet of the past human populations found near the site. More extensive research covering isotopic descriptions of various prehistoric, historic and modern populations is needed to explore the role of stable isotope analysis for provenancing human skeletal remains and assessing human migration patterns/routes, geographic origins, paleodiet and subsistence practices of past populations.

Downloads

Download data is not yet available.

References

Bartelink E, Berry R, Chesson L. 2014. Stable isotopes and human provenancing. In: X Mallett, T Blythe and R Berry, editors. Advances in Forensic Human Identification. CRC Press 165–92.
View in Google Scholar

Bartelink EJ, Berg GE, Beasley MM, Chesson LA. 2014. Application of stable isotope forensics for predicting region of origin of human remains from past wars and conflicts. Ann Anthropol Pract 38(1):124–36.
View in Google Scholar

Bastos MQ, Santos RV, de Souza SM, Rodrigues-Carvalho C, Tykot RH et al. 2016. Isotopic study of geographic origins and diet of enslaved Africans buried in two Brazilian cemeteries. J Archaeol Sci 70:82–90.
View in Google Scholar

Beard BL, Johnson CM. 2000. Strontium isotope composition of skeletal material can determine the birth place and geographic mobility of humans and animals. J Forensic Sci 45:1049–61.
View in Google Scholar

Beaumont J, Gledhill A, Lee Thorp J, Montgomery J. 2013. Childhood diet: a closer examination of the evidence from dental tissues using stable isotope analysis of incremental human dentine. Archaeometry 55(2):277–95.
View in Google Scholar

Bentley RA, Price TD, Stephan E. 2004. Determining the ‘local’ 87Sr/86Sr range for archaeological skeletons: a case study from Neolithic Europe. J Archaeol Sci 31(4): 365–75.
View in Google Scholar

Bocherens H, Bonilla MDZ, Daujeard C, Fernandes P, Raynal JP, Moncel, MH. 2016. Direct isotopic evidence for subsistence variability in Middle Pleistocene Neanderthals (Payre, south-eastern France). Quat Sci Rev 154:226–36.
View in Google Scholar

Bocherens H, Fizet M, Mariotti A. 1994. Diet, physiology, and ecology of fossil mammals as inferred from stable carbon and nitrogen isotope biogeochemistry: implications for Pleistocene bears. Palaeogeo Palaeoclimatolo Palaeoecol 107:213–25.
View in Google Scholar

Campbell KL, Wood JW. 1988. Fertility in traditional societies. In: P Diggory, M Potts, and S Teper, editors. Natural human fertility: social and biological determinants. Hampshire: Macmillan Press. 39–69.
View in Google Scholar

Chinique de Armas Y, Roksandic M, Nikitovic D, Rodríguez Suárez R, Smith D, Kanik N, García Jorda D, Buhay WM. 2017. Isotopic reconstruction of the weaning process in the archaeological population of Canímar Abajo, Cuba: a bayesian probability mixing model approach. PLOS ONE. doi: https://doi.org/10.1371/journal.pone.0176065.10.1371/journal.pone.0176065
View in Google Scholar

Chu NC, Henderson GM, Belshaw NS, Hedges REM. 2006. Establishing the potential of Ca isotopes as proxy for consumption of dairy products. Appl Geochem 21:1656–67.
View in Google Scholar

Debono M, Gossiel F, Walsh J, Eastell R. 2011. Effect of age and gender on bone turnover markers: relationships with oestradiol and parathyroid hormone. Endocr Abstr 25:6.
View in Google Scholar

Dupras TL, Tocheri MW. 2007. Reconstructing infant weaning histories at Roman period Kellis, Egypt using stable isotope analysis of dentition. Am J Phys Anthropol 134(1):63–74.
View in Google Scholar

Eerkens JW, Mackie M, Bartelink EJ. 2013. Brackish water foraging: isotopic landscapes and dietary reconstruction in Suisun Marsh, Central California. J Archaeol Sci 40:3270–81.
View in Google Scholar

English NB, Betancourt JL, Dean JS, Quade J. 2001. Strontium isotopes reveal distant sources of architectural timber in Chaco Canyon, New Mexico. Proc National Acad Sci 98(21):11891–96.
View in Google Scholar

Fernandes R, Nadeau MJ, Grootes, PM. 2012. Macronutrient-based model for dietary carbon routing in bone collagen and bioapatite. Archaeol Anthropol Sci 4(4):291–301.
View in Google Scholar

Font L, Jonker G, van Aalderen PA, Schiltmans EF, Davies GR. 2015. Provenancing of unidentified World War II casualties: Application of strontium and oxygen isotope analysis in tooth enamel. Sci Justice 55(1):10–17.
View in Google Scholar

Font L, van der Peijl G, van Leuwen, C, van Wetten I, Davies GR. 2015. Identification of the geographical place of origin of an unidentified individual by multi-isotope analysis. Sci Justice 55(1):34–42.
View in Google Scholar

Fraser I, Meier-Augenstein W, Kalin RM. 2006. The role of stable isotopes in human identification: a longitudinal study into the variability of isotopic signals in human hair and nails. Rapid Commun Mass Spectrom 20(7):1109–16.
View in Google Scholar

Fry B. 2006. Stable isotope ecology. Berlin: Springer.
View in Google Scholar

Fuller BT, Fuller JL, Harris DA, Hedges REM. 2006. Detection of breastfeeding and weaning in modern human infants with carbon and nitrogen stable isotope ratios. Am J Phys Anthropol 129(2):279–93.
View in Google Scholar

Gregoricka LA. 2013. Residential mobility and social identity in the periphery: strontium isotope analysis of archaeological tooth enamel from southeastern Arabia. J Archaeol Sci 40(1):452–64.
View in Google Scholar

Hedges REM, Clement JG, Thomas CDL, O’Connell TC. 2007. Collagen turnover in the adult femoral mid-shaft: modelled from anthropogenic radiocarbon tracer measurements. Am J Phys Anthropol 133:808–16.
View in Google Scholar

Hedges REM, Reynard LM. 2007. Nitrogen isotopes and the trophic level of humans in archaeology. J Archaeol Sci 34:1240–51.
View in Google Scholar

Hedges REM. 2002. Bone diagenesis: an overview of processes. Archaeometry 44:319–28.
View in Google Scholar

Henderson RC, Lee-Thorp J, Loe L. 2014. Early life histories of the London poor using δ13C and δ15N stable isotope incremental dentine sampling. Am J Phys Anthropol 154:585–93.
View in Google Scholar

Hinz EA., Kohn MJ. 2010. The effect of tissue structure and soil chemistry on trace element uptake in fossils. Geochim Cosmochim Acta 74:3213–31.
View in Google Scholar

Holobinko A, Meier Augenstein W, Kemp HF, Prowse T, Ford SM. 2011. 2H stable isotope analysis of human tooth enamel: a new tool for forensic human provenancing? Rapid Commun Mass Spectrum 25(7):910–16.
View in Google Scholar

Hou L, Hu Y, Zhao X, Li S, Wei D, Hou Y et al. 2013. Human subsistence strategy at Liuzhuang site, Henan, China during the proto-Shang culture (∼2000–1600 BC) by stable isotopic analysis. J Archaeol Sci 40(5):2344–51.
View in Google Scholar

Howcroft R, Eriksson G, Lidén K. 2012. Conformity in diversity? Isotopic investigations of infant feeding practices in two Iron Age populations from southern Öland, Sweden. Am J Phys Anthropol 149(2):217–30.
View in Google Scholar

Huertas AD, Iacumin P, Stenni B, Chillon BS, Longinelli A. 1995. Oxygen isotope variations of phosphate in mammalian bone and tooth enamel. Geochim. Cosmochim. Acta 59:4299–305.
View in Google Scholar

Humphrey LT. 2014. Isotopic and trace element evidence of dietary transitions in early life. Ann Hum Biol 41:348–57.10.
View in Google Scholar

Jim S, Ambrose SH, Evershed RP. 2004. Stable carbon isotopic evidence for differences in the dietary origin of bone cholesterol, collagen and apatite: implications for their use in palaeodietary reconstruction. Geochim Cosmochim Acta 68(1):61–72.
View in Google Scholar

Keenleyside A, Schwarcz HP, Panayotova K. 2011. Oxygen isotopic evidence of residence and migration in a Greek colonial population on the Black Sea. J Archaeol Sci 38(10): 2658–66.
View in Google Scholar

Kenoyer JM, Price TD, Burton JH. 2013. A new approach to tracking connections between the Indus Valley and Mesopotamia: initial results of strontium isotope analyses from Harappa and Ur. J Archaeol Sci 40(5):2286–97.
View in Google Scholar

Knudson KJ, Pestle WJ, Torres Rouff C, Pimentel G. 2012. Assessing the life history of an Andean traveller through biogeochemistry: stable and radiogenic isotope analyses of archaeological human remains from Northern Chile. Int J Osteoarchaeol 22(4):435–51.
View in Google Scholar

Knudson KJ, Price TD, Buikstra JE, Blom DE. 2004. The use of strontium isotope analysis to investigate Tiwanaku migration and mortuary ritual in Bolivia and Peru. Archaeometry 46(1): 5–18.10.
View in Google Scholar

Knudson KJ, Tung TA. 2011. Investigating regional mobility in the southern hinterland of the Wari Empire: biogeochemistry at the site of Beringa, Peru. Am J Phys Anthropol 145(2): 299–310.
View in Google Scholar

Kohn MJ, Schoeninger MJ, Valley JW. 1996. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochim Cosmochim Acta 60:3889–96.
View in Google Scholar

Kwok CS, Keenleyside A. 2015. Stable isotope evidence for infant Feeding Practices in the greek colony of apollonia Pontifica. In: A Papathanasiou, MP Richards and SC Fox, editors. Archaeodiet in the Greek World: dietary reconstruction from stable isotope analysis. 147–70.
View in Google Scholar

Laffoon JE, Davies GR, Hoogland ML, Hofman CL. 2012. Spatial variation of biologically available strontium isotopes (87 Sr/86 Sr) in an archipelagic setting: a case study from the Caribbean. J Archaeol Sci 39(7):2371–84.10.
View in Google Scholar

Lamb AL, Evans JE, Buckley R, Appleby J. 2014. Multi-isotope analysis demonstrates significant lifestyle changes in King Richard III. J Archaeol Sci 50:559–65.
View in Google Scholar

Lewis J, Pikeb AWG, Coath CD Evershedc RP. 2017. Strontium concentration, radiogenic (87Sr/86Sr) and stable (δ88Sr) strontium isotope systematics in a controlled feeding study. Sci Tech Archaeol Res 3(1):53–65.
View in Google Scholar

Lewis ME. 2007. The bioarchaeology of children: perspectives from biological and forensic anthropology. Cambridge: Cambridge University Press.
View in Google Scholar

Lightfoot E, O’Connell TC. 2016. On the Use of Biomineral Oxygen Isotope Data to Identify Human Migrants in the Archaeological Record: Intra-Sample Variation, Statistical Methods and Geographical Considerations. PLOS ONE 11(4):e0153850.
View in Google Scholar

Lisowska-Gaczorek A, Cienkosz-Stepańczak B, Szostek K. 2017. Oxygen stable isotopes variation in water precipitation in Poland: anthropological applications. Anthropol Rev 80(1):57–70.
View in Google Scholar

Lisowska-Gaczorek A, Kroziel S, Cienkosz-Stepanczak B, Madrzyk K, Pawlytac J, Gronkiewicz S, Wołoszynd M, Szostek K. 2016. An analysis of the origin of an early medieval group of individuals from Gródek based on the analysis of stable oxygen isotopes. HOMO 67(4):313–27.
View in Google Scholar

Liu HC, You CF, Chen CY, Liu YC, Chung MT. 2014. Geographic determination of coffee beans using multi-element analysis and isotope ratios of boron and strontium. Food Chem. 142:439–45.
View in Google Scholar

López-Costas O, Müldner G, Cortizas AM. 2015. Diet and lifestyle in Bronze Age Northwest Spain: the collective burial of Cova do Santo. J Archaeol Sci 55:209–18.
View in Google Scholar

Luz B, Kolodny, Y. (1989). Oxygen isotope variation in bone phosphate. Appl Geochem 4(3):317–323.10.
View in Google Scholar

Luz, B., Kolodny, Y., Horowitz, M., 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environ mental drinking water. Geochim Cosmochim Acta 48:1689–93.
View in Google Scholar

Mbeki L, Kootker LM, Kars H, Davies GR. 2017. Sickly slaves, soldiers and sailors. Contextualising the Cape’s 18th–19th century Green Point burials through isotope investigation. J Archaeol Sci 11:480–90.
View in Google Scholar

McKinney CR, McCrea JM, Epstein S, Allen HA, Urey HC. 1950. Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev Sci Instrum 21(8):724–30.
View in Google Scholar

Meier-Augenstein W, Fraser I. 2008. Forensic isotope analysis leads to identification of a mutilated murder victim. Sci Justice 48(3):153–59.
View in Google Scholar

Mnich B, Skrzat J, Szostek K. 2017. Estimating age at death from an archaeological bone sample: a preliminary study based on comparison of histomorphometric methods. Anthropol Rev 80(1):37–55.
View in Google Scholar

Naumann E, Price TD, Richards MP. 2014. Changes in dietary practices and social organization during the pivotal late iron age period in Norway (AD 550–1030): isotope analyses of Merovingian and Viking Age human remains. Am J Phys Anthropol 155(3):322–331.
View in Google Scholar

Nelson SJ, Ash MM. 2010. Wheeler’s Dental Anatomy, Physiology, and Occlusion, 9th edition. St. Louis, Missouri: Saunders Elsevier.
View in Google Scholar

Oelze VM, Nehlich O, Richards MP. 2012. ‘There’s no place like home’ – no isotopic evidence for mobility at the Early Bronze Age cemetery of Singen, Germany. Archaeometry 54:752–78.
View in Google Scholar

Perfitt AM. 1983. The physiologic and clinical significance of bone histomorphometric data. In: RR Recker, editor. Bone histomorphometry: techniques and interpretation. Boca Raton, Foryda: CRC Press. 143–244.
View in Google Scholar

Pestle WJ, Hubbe M, Smith EK, Stevenson JM. 2015. A linear model for predicting δ13C protein. Am J Phys Anthropol 157:694–703.
View in Google Scholar

Podlesak DW, Torregrossa AM, Ehleringer, JR, Dearing MD, Passey BH, Cerling TE. 2008. Turnover of oxygen and hydrogen isotopes in the body water, CO2, hair, and enamel of a small mammal. Geochim Cosmochim Acta 72(1):19–35.
View in Google Scholar

Price TD, Manzanilla L, Middleton WD. 2000. Immigration and the ancient city of Teotihuacan in Mexico: a study using strontium isotope ratios in human bone and teeth. J Archaeol Sci 27(10):903–13.
View in Google Scholar

Regan LA 2006. Isotopic determination of region of origin in modern peoples: Applications for identification of US war-dead from the Vietnam Conflict. Florida: Univ Gainesville.
View in Google Scholar

Reitsema LJ, Kozłowski T. 2013. Diet and society in Poland before the state: stable isotope evidence from a Wielbark population. Anthropol Rev. 76(1):1–22.
View in Google Scholar

Reitsema LJ, Vercellotti G. 2012. Stable isotope evidence for sex and status based variations in diet and life history at medieval Trino Vercellese, Italy. Am J Phys Anthropol 148(4):589–600.
View in Google Scholar

Reynard LM, Hedges RE. 2008. Stable hydrogen isotopes of bone collagen in palaeodietary and palaeoenvironmental reconstruction. J Archaeol Sci 35(7):1934–42.10.1016/j.jas.2007.12.004
View in Google Scholar

Reynard LM, Henderson GM, Hedges REM. 2010. Calcium isotope ratios in animal aand human bones. Geochem Cosmochim Acta 74:3735–50.
View in Google Scholar

Reynard LM, Henderson GM, Hedges REM. 2011. Calcium isotopes in archaeological bones and their relationship to dairy consumption. J Archaeol Sci 38:657–64.
View in Google Scholar

Reynard LM, Pearson JA, Henderson GM, Hedges REM. 2013. Calcium isotopes in juvenile milk consumption. Archaeometry 55(5):946–57.10.
View in Google Scholar

Romek KM, Julien M, Frasquet-Darrieux M, Tea I, Antheaume I, Hankard R, Robins RJ. 2013. Human baby hair amino acid natural abundance 15N-isotope values are not related to the 15N-isotope values of amino acids in mother’s breast milk protein. Amino Acids 45:1365–72.
View in Google Scholar

Salazar-Garcia DC, Richards MP, Nehlich O, Henry AG. 2014. Dental calculus is not equivalent to bone collagen for isotope analysis: a comparison between carbon and nitrogen stable isotope analysis of bulk dental calculus, bone and dentine collagen from same individuals from the Medieval site of El Raval (Alicante, Spain). J Archeol Sci 47: 70–7.
View in Google Scholar

Schmidt, Kwok C, Keenleyside A. 2016. Infant feeding practices and childhood diet at Apollonia Pontica: Isotopic and dental evidence. Am J Phys Anthropol 159(2):284–99.
View in Google Scholar

Schurr MR. 1997. Stable isotopes as evidence for weaning at the Angel site: a comparison of isotopic and demographic measures of weaning age. J Archaeol Sci 24: 919–27.
View in Google Scholar

Schurr MR. 1998. Using stable nitrogen isotopes to study weaning behaviours in past populations. World Archaeol 30(2): 327–342
View in Google Scholar

Sealy J. 2001. Body tissue chemistry and palaeodiet. In: DR Brothwell and AM Pollard, editors. Handbook of archaeological sciences. Chichester: Wiley. 269–79.
View in Google Scholar

Sealy J. 2010. Isotopic evidence for the antiquity of cattle-based pastoralism in southernmost Africa. J Afr Archaeol 8(1):65–81.
View in Google Scholar

Shaw B, Buckley H, Summerhayes G, Anson D, Garling S, Valentin F et al. 2010. Migration and mobility at the Late Lapita site of Reber–Rakival (SAC), Watom Island using isotope and trace element analysis: a new insight into Lapita interaction in the Bismarck Archipelago. J Archaeol Sci 37(3):605–13.
View in Google Scholar

Someda H, Gakuhari T, Akai J, Araki Y, Kodera T, Tsumatori G et al. 2016. Trial application of oxygen and carbon isotope analysis in tooth enamel for identification of past-war victims for discriminating between Japanese and US soldiers. Forensic Sci Int 261:166-e1.
View in Google Scholar

Somerville AD, Fauvelle M, Froehle AW. 2013. Applying new approaches to modeling diet and status: isotopic evidence for commoner resiliency and elite variability in the Classic Maya lowlands. J Archaeol Sci 40(3):1539–53.
View in Google Scholar

Stantis C, Kinaston RL, Richards MP, Davidson JM, Buckley HR. 2015. Assessing human diet and movement in the Tongan maritime chiefdom using isotopic analyses. PLOS ONE 10(3):e0123156.
View in Google Scholar

Stephan E. 2000. Oxygen isotope analysis of animal bone phosphate: method refinement, influence of consolidants, and reconstruction of palaeotemperatures for Holocene sites. J Archaeol Sci 27:523–35.
View in Google Scholar

Stepriczak B, Szostek K, Pawlyta J. 2014. The human bone oxygen isotope ratio changes with age. Geochronometria 41(2):147–59.
View in Google Scholar

Svyatko SV, Schulting RJ, Mallory J, Murphy EM, Reimer PJ, Khartanovich VI et al. 2013. Stable isotope dietary analysis of prehistoric populations from the Minusinsk Basin, Southern Siberia, Russia: a new chronological framework for the introduction of millet to the eastern Eurasian steppe. J Archaeol Sci 40(11):3936–45.
View in Google Scholar

Szostek K, Madrzyk K, Cienkosz-Stepańczak B. 2015. Strontium isotopes as an indicator of human migration – easy questions, difficult answers. Anthropol Rev 78(2):133–56.
View in Google Scholar

Tsutaya T, Nagaoka T, Sawada J, Hirata K, Yoneda M. 2014. Stable isotopic reconstructions of adult diets and infant feeding practices during urbanization of the city of Edo in 17th century Japan. Am J Phys Anthropol 153(4):559–69.
View in Google Scholar

Tsutaya T, Yoneda M. 2013. Quantitative reconstruction of weaning ages in archaeological human populations using bone collagen nitrogen isotope ratios and approximate Bayesian computation. PLOS ONE 8(8):72327 e.1–10.
View in Google Scholar

Wang P, Song X, Han D, Zhang Y, Liu X. 2010. A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi Province, China. Agri Water Mgmt 97(3):475–82.
View in Google Scholar

Waterlow JC. 2006. Protein Turnover. UK, Wallingford: CABI Publishing.
View in Google Scholar

Webb EC, White CD, Longstaffe FJ. 2013. Exploring geographic origins at Cahuachi using stable isotopic analysis of archaeological human tissues and modern environmental waters. Int J Osteoarchaeol 23(6):698–715.
View in Google Scholar

WHO. 2009. Infant and young child feeding: model chapter for textbooks for medical students and allied health professionals. Geneva: World Health Organization.
View in Google Scholar

Wood JW, Milner GR, Harpending, HC, Weiss KM. 1992. The osteological paradox. Curr Anthropol 33:343–7.
View in Google Scholar

Wright LE, Schwarcz, HP. 1996. Infrared and isotopic evidence for diagenesis of bone apatite at os Pilas, Guatemala: palaeodietary implications. J Archaeol Sci 23:933–44.
View in Google Scholar

Wright LE. 2006. Diet, health, and status among the Pasión Maya: a reappraisal of the collapse (Vol. 2). Vanderbilt University Press.
View in Google Scholar

Wright, LE, Schwarcz, HP. 1998. Stable carbon and oxygen isotopes in human tooth enamel: identifying breastfeeding and weaning in prehistory. Am J Phys Anthropol 106:1–18.
View in Google Scholar

Downloads

Published

2017-09-16

How to Cite

Sehrawat, J. S., & Kaur, J. (2017). Role of stable isotope analyses in reconstructing past life-histories and the provenancing human skeletal remains: a review. Anthropological Review, 80(3), 243–258. https://doi.org/10.1515/anre-2017-0017

Issue

Section

Articles

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.