Non‑Metric Data in Household Durable Goods Analysis. Selected Aspects

Authors

  • Józef Dziechciarz Wroclaw University of Economics, Faculty of Management, Computer Science and Finance, Department of Econometrics and Operations Research
  • Marta Dziechciarz-Duda Wroclaw University of Economics, Faculty of Economics, Management and Tourism, Department of Econometrics and Computer Science

DOI:

https://doi.org/10.18778/0208-6018.330.08

Keywords:

non‑metric data analysis, durable goods, correspondence analysis, logistic regression, classification trees, cart, households

Abstract

Measurement of household endowment with durables is crucial in many aspects of assessing the social and economic situation of a country and its citizens. The demand (sales) for durables is regarded as one of the key indicators of economic conditions. Similarly, analysis and evaluation of household durable goods are usually considered in the context of measuring the quality of life. The possession of durables is measured by means of the number and quality of goods in households. Measurement of household endowment is conducted usually by means of weak measurement scales, namely nominal and ordinal. Such data require the use of specialised tools for analysis and modelling. This study discusses the possibilities of statistical analysis of such data. Additionally, modelling and problems of inference on the basis of obtained results are discussed.

Downloads

Download data is not yet available.

References

Abdullah L., Khadiah S. (2011), Fuzzy Linguistic for Measuring Customer Satisfaction, “International Journal of Latest Trends in Computing”, no. 2(2), pp. 220–224.
Google Scholar

Adams E., Fagot R., Robinson R. (1965), A theory of appropriate statistics, “Psychometrika”, vol. 30, pp. 99–127.
Google Scholar

Amendola N., Vecchi G. (2014), Durable Goods and Poverty Measurement, World Bank Policy Research Working Paper No. 7105, Washington.
Google Scholar

Blackorby C., Donaldson D. (1987), Welfare Ratios and Distributionally Sensitive Cost‑Benefit Analysis, “Journal of Public Economics”, no. 34, pp. 265–290.
Google Scholar

Blackorby C., Donaldson D. (1988), Money Metric Utility. A Harmless Normalization?, “Journal of Economic Theory”, no. 46, pp. 120–129.
Google Scholar

Borovicka A. (2014), Fuzzy Weights Estimation Method Based on the Linguistic Expression of Criteria Relevance, “Economic Review. Central European Review of Economics”, no. 17, pp. 13–23.
Google Scholar

Breiman L., Friedman J., Olshen R., Stone C. (1984), Classification and regression trees, Chapman & Hall, London.
Google Scholar

Chu K. (2010), The Application of Fuzzy Linguistic Scale on Internet Questionnaire Survey, “International Journal of Organisation and Innovation”, no. 2(4), pp. 1–10.
Google Scholar

Deaton A. (1997), The Analysis of Household Surveys. Microeconometric Analysis for Development Policy, Johns Hopkins University Press, Baltimore.
Google Scholar

Deaton A., Zaidi S. (2002), Guidelines for Constructing Consumption Aggregates for Welfare Analysis, Living Standards Measurement Study World Bank Working Paper no. 135, Washington, https://openknowledge.worldbank.org/handle/10986/14101 [accessed: 12.10.2016].
Google Scholar

Diewert W. (2004), Durables and User Costs in: Consumer Price Index Manual. Theory and Practice, chapter 23, ILO, IMF, OECD, UNECE, Eurostat, World Bank.
Google Scholar

Diewert W. (2009), Durables and Owner‑Occupied Housing in a Consumer Price Index, [in:] W. Diewert, J. Greenlees, C. Hulten (eds.), Price Index Concepts and Measurements, University of Chicago Press, Chicago.
Google Scholar

Dziechciarz‑Duda M. (2007), Klasyfikacja konsumentów na rynku dóbr trwałego użytkowania w Polsce, “Taksonomia”, no. 13, pp. 389–396.
Google Scholar

Dziechciarz‑Duda M., Król A. (2017), An application of multivariate statistical analysis for the valuation of durable goods brands, “Statistics in Transition New Series”, vol. 18, no. 1, pp. 75–90.
Google Scholar

Dziechciarz J. (2004a), O możliwości doskonalenia polityki cenowej przy pomocy metody conjoint measurement oraz regresji hedonicznej, [in:] M. Rószkiewicz (ed.), Identyfikacja struktur rynkowych. Pomiar, modelowanie, symulacja, SGH, Warszawa.
Google Scholar

Dziechciarz J. (2004b), Regresja hedoniczna: próba wskazania obszarów stosowalności, [in:] A. Zeliaś (ed.), Przestrzenno‑czasowe modelowanie zjawisk gospodarczych, Akademia Ekonomiczna, Kraków.
Google Scholar

Dziechciarz J., Dziechciarz‑Duda M., Przybysz K. (2010), Household Possession of Consumer Durables on Background of Some Poverty Lines, [in:] H. Locarek‑Junge, C. Weihs (eds.), Classification as a Tool for Research, Springer, Berlin, pp. 735–742.
Google Scholar

Fisher I. (1911), The Purchasing Power of Money, its Determination and Relation to Credit, Interest, and Crises, McMillan, New York.
Google Scholar

Framework for Statistics on the Distribution of Household Income, Consumption and Wealth (2013), OECD, Paris.
Google Scholar

Gatnar E., Walesiak M. (2011), Analiza danych jakościowych i symbolicznych z wykorzystaniem programu R, Beck, Warszawa.
Google Scholar

General household survey (2014), Statistics South Africa, Pretoria, https://www.statssa.gov.za/publications/p0318/p03182013.pdf [accessed: 28.09.2016].
Google Scholar

Gillingham R. (1983), Measuring the Cos of Shelter for Homeowners. Theoretical and Empirical Considerations, “The Review of Economics and Statistics”, no. 2(65), pp. 254–265.
Google Scholar

Goodhart C. (2001), What Weight should be given to Asset Price in Measurement of Inflation?, “The Economic Journal”, vol. 111, pp. 335–356.
Google Scholar

Hulten C., Wykoff F. (1981), The Measurement of Economic Depreciation, [in:] C. Hulten (ed.), Depreciation, Inflation, and the Taxation of Income from Capital, Urban Institute Press, Washington.
Google Scholar

Jorgenson D. (1963), Capital Theory an Investment Behaviour, “American Economic Review”, no. 53, pp. 247–259.
Google Scholar

Katz A. (1983), Valuing the Services of consumer Durables, “Review of Income and Wealth”, no. 29(4), pp. 405–427.
Google Scholar

Keynes J. (1936), The General Theory of Employment, Interest, and Money, Harcourt, New York.
Google Scholar

Kramer J. (1993), Konsumpcja. Prawidłowości, struktura, przyszłość, PWE, Warszawa.
Google Scholar

Kramer J. (1997), Konsumpcja w gospodarce rynkowej, PWE, Warszawa.
Google Scholar

Lanjouw P. (2009), Constructing a Consumption Aggregate for the Purpose of Welfare Analysis. Principles, Issues and Recommendations Arising from the Case of Brazil), Paper prepared in the World Bank for the OECD/University of Maryland Conference entitled: Measuring Poverty, Income Inequality and Social Exclusion: Lessons from Europe, March 16/17, Paris.
Google Scholar

Liou T., Wang M. (1994), Subjective Assessment of Mental Workload. A Fuzzy Linguistic Multi criteria Approach, “Fuzzy Sets and Systems”, no. 62(2), pp. 155–165.
Google Scholar

Lippe P. von der (2007), Index Theory and Price Statistics, Lang Publishing, Oxford.
Google Scholar

Mayntz R., Holm K., Hübner P. (1985), Wprowadzenie do metod socjologii empirycznej, PWN, Warszawa.
Google Scholar

Moulton B. (2004), The System of National Accounts for the New Economy. What Should Change?, “Review of Income and Wealth”, no. 50(2), pp. 261–278.
Google Scholar

Odekon M. (ed.) (2015), Encyclopaedia of World Poverty, Sage, Thousand Oaks.
Google Scholar

Offer A. (2005), The Challenge of Affluence Self‑Control and Well‑Being in the United States and Britain since 1950, Oxford University Press, Oxford.
Google Scholar

Ravallion M. (1998), Poverty Lines in Theory and Practice. Living Standards Measurement Study, LSMS Working Paper no. 133, World Bank, Washington, http://documents.worldbank.org/curated/en/916871468766156239/pdf/multi‑page.pdf [accessed: 28.09.2016].
Google Scholar

Rószkiewicz M. (2002), Narzędzia statystyczne w analizach marketingowych, C.H. Beck, Warszawa.
Google Scholar

Samuelson P. (1974), Complementarity. An Essay on the 40th Anniversary of the Hicks – Allen Revolution in Demand Theory, “Journal of Economic Literature”, no. 15, pp. 24–55.
Google Scholar

Slesnik D. (2000), Consumption and Social Welfare. Living Standards and Their Distribution in the United States, Cambridge University Press, Cambridge.
Google Scholar

Social Diagnosis (2015), Council for Social Monitoring, Social Diagnosis integrated database, www.diagnoza.com [accessed: 11.05.2016].
Google Scholar

Stevens S. (1959), Measurement, Psychophysics and Utility, [in:] C. Churchman, P. Ratoosh (eds.), Measurement; Definitions and Theories, Wiley, New York.
Google Scholar

System of National Accounts (2008), Commission of the European Communities, IMF, UN, World Bank, Brussels–Luxembourg–New York–Paris–Washington.
Google Scholar

Walesiak M. (1996), Metody analizy danych marketingowych, PWN, Warszawa.
Google Scholar

Walesiak M. (2000), Skale pomiaru zmiennych, [in:] M. Walesiak, A. Bąk, Conjoint analysis w badaniach marketingowych, Akademia Ekonomiczna, Wrocław.
Google Scholar

Zadeh L. (1975), The Concept of a Linguistic Variable and its Application to Approximate Reasoning, “Information Sciences”, part I, no. 8, pp. 199–249, part II, no. 8, pp. 301–357.
Google Scholar

Downloads

Published

2017-11-15

How to Cite

Dziechciarz, J., & Dziechciarz-Duda, M. (2017). Non‑Metric Data in Household Durable Goods Analysis. Selected Aspects. Acta Universitatis Lodziensis. Folia Oeconomica, 4(330), [111]-128. https://doi.org/10.18778/0208-6018.330.08

Issue

Section

Articles

Similar Articles

<< < 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 > >> 

You may also start an advanced similarity search for this article.