On the Simulation Study of Jackknife and Bootstrap MSE Estimators of a Domain Mean Predictor for Fay‑Herriot Model

Authors

  • Małgorzata Karolina Krzciuk University of Economics in Katowice. Department of Statistics, Econometrics and Mathematics

DOI:

https://doi.org/10.18778/0208-6018.331.11

Keywords:

estimators of MSE, jackknife, parametric bootstrap, Empirical Best Linear Unbiased Predictor, Fay‑Herriot model, simulation

Abstract

 

We consider the problem of the estimation of the mean squared error (MSE) of some domain mean predictor for Fay‑Herriot model. In the simulation study we analyze properties of eight MSE estimators including estimators based on the jackknife method (Jiang, Lahiri, Wan, 2002; Chen, Lahiri, 2002; 2003) and parametric bootstrap (Gonzalez‑Manteiga et al., 2008; Buthar, Lahiri, 2003). In the standard Fay‑Herriot model the independence of random effects is assumed, and the biases of the MSE estimators are small for large number of domains. The aim of the paper is the comparison of the properties of MSE estimators for different number of domains and the misspecification of the model due to the correlation of random effects in the simulation study.

 

Downloads

Download data is not yet available.

References

Bell W. (1997), Models for county and state poverty estimates. Preprint, Statistical Research Division, U.S. Census Bureau.
Google Scholar

Bell W. (2001), Discussion with “Jackknife in the Fay‑Herriot Model with An Example”, “Proc. of the Seminar of Funding Opportunity in Survey Research”, pp. 98–104.
Google Scholar

Butar F.B., Lahiri P. (2003), On Measures of Uncertainty of Empirical Bayes Small‑Area Estimators, “Journal of Statistical Planning and Inference”, vol. 112, pp. 635–676.
Google Scholar

Chatterjee S., Lahiri P., Li H. (2008), Parametric Bootstrap Approximation to the Distribution of EBLUP and Related Prediction Intervals in Linear Mixed Models, “The Annals of Statistics”, vol. 36, no. 3, pp. 1221–1245.
Google Scholar

Chen S., Lahiri P. (2002), A Weighted Jackknife MSPE Estimator in Small‑Area Estimation, “Proceeding of the Section on Survey Research Methods”, American Statistical Association, pp. 473–477.
Google Scholar

Chen S., Lahiri P. (2003), A Comparison of Different MSPE Estimators of EBLUP for the Fay‑Herriot Model, “Proceeding of the Section on Survey Research Methods”, American Statistical Association, pp. 905–911.
Google Scholar

Conley T.G. (1999), GMM estimation with cross selection dependence, “Journal of Econometrics”, vol. 92(1), pp. 1–45.
Google Scholar

Dacey M. (1968), A review of measures of contiguity for two and k‑color maps, [in:] B. Berry, D. Marble (eds.), Spatial analysis: A Reader in Statistical Geography, Prentice Hall, Englewood Cliffs.
Google Scholar

Datta G., Lahiri P. (2000), A unified measure of uncertainty of estimated best linear unbiased predictors in small area estimation problems, “Statistica Sinica”, vol. 10, pp. 613–627.
Google Scholar

Datta G.S., Rao J.N.K., Smith D.D. (2005), On Measuring the Variability of Small Area Estimators under a Basic Area Level Model, “Biometrica”, vol. 92, pp. 183–196.
Google Scholar

Fay R.E. III, Herriot R.A. (1979), Estimation of Incomes for Small Places: An Application of James‑Stein Procedures to Census Data, “Journal of the American Statistical Association”, vol. 74, pp. 269–277, http://dx.doi.org/10.2307/2286322.
Google Scholar

Gonzales‑Manteiga W., Lombardia M., Molina I., Morales D., Santamaria L. (2008), Bootstrap Mean Squared Error of Small‑Area EBLUP, “Journal of Statistical Computation and Simulation”, vol. 78, pp. 433–462, http://dx.doi.org/10.1007/s00180-008-0138-4.
Google Scholar

Henderson C.R. (1950), Estimation of genetic parameters (Abstracts), “Annals of Mathematical Statistics”, vol. 21, pp. 309–310.
Google Scholar

Jędrzejczak A. (2011), Metody analizy rozkładów dochodów i ich koncentracji, Wydawnictwo Uniwersytetu Łódzkiego, Łódź.
Google Scholar

Jiang J. (2007), Linear and Generalized Linear Mixed Models and Their Applications, Springer Science+Business Media, New York.
Google Scholar

Jiang J., Lahiri P. (2006), Mixed Model Prediction and Small Area Estimation, “Test”, vol. 15, no. 1, pp. 1–96, http://dx.doi.org/10.1007/BF02595419.
Google Scholar

Jiang J., Lahiri P., Wan S.‑M. (2002), Unified Jackknife Theory for Empirical Best Prediction with M‑estimation, “The Annals of Statistics”, vol. 30, pp. 1782–1810.
Google Scholar

Kackar R.N., Harville D.A. (1981), Unbiasedness of two‑stage estimation prediction procedures for mixed linear models, “Communications in Statistics”, Series A, vol. 10, pp. 1249–1261.
Google Scholar

Kackar R.N., Harville D.A. (1984), Approximations for Standard Errors of Estimators of Fixed and Random Effect in Mixed Linear Models, “Journal of the American Statistical Association”, vol. 79, pp. 853–862.
Google Scholar

Karpuk M. (2015), Wpływ czynników przestrzennych na ruch turystyczny w województwie zachodniopomorskim (2006–2012), “Zeszyty Naukowe Wydziału Nauk Ekonomicznych Politechniki Koszalińskiej”, vol. 19, pp. 39–56.
Google Scholar

Krzciuk M.K. (2015), On the simulation study of the properties of MSE estimators in small area statistics, Conference Proceedings. 33rd International Conference Mathematical Methods in Economics 2015, pp. 413–418.
Google Scholar

Kuc M. (2015), Wpływ sposobu definiowania macierzy wag przestrzennych na wynik porządkowania liniowego państw Unii Europejskiej pod względem poziomu życia ludności, “Taksonomia 24”, vol. 384, pp. 163–170.
Google Scholar

Lahiri P. (2003), On the Impact of Bootstrap in Survey Sampling and Small‑Area Estimation, “Statistical Science”, vol. 18, no. 2, pp. 199–210.
Google Scholar

Lohr S.L., Rao J.N.K. (2009), Jackknife estimation of mean squared error of small area predictors in nonlinear mixed models, “Biometrika”, vol. 96, pp. 457–468.
Google Scholar

Molina I., Rao J. (2010), Small Area Estimation of Powerty indicators, “The Canadian Journal of Statistics”, vol. 38, no. 3, pp. 369–385.
Google Scholar

Prasad N.G.N., Rao J.N.K. (1990), The Estimation of the Mean Squared Error of Small‑Area Estimators, “Journal of the American Statistical Association”, vol. 85, no. 409, pp. 163–171, http://dx.doi.org/10.2307/2289539.
Google Scholar

Pietrzak M.B. (2010), Dwuetapowa procedura budowy przestrzennej macierzy wag z uwzględnieniem odległości ekonomicznej, “Oeconomia Copernicana”, vol. 1, pp. 65–78.
Google Scholar

Pratesi M., Salvati N. (2008), Small Area Estimation: The EBLUP Estimator Based on Spatially Correlated Random Area Effects, “Statistical Methods and Applications”, vol. 17, pp. 113–141, http://dx.doi.org/10.1007/s10260-007-0061-9.
Google Scholar

Rao J.N.K. (2003), Small Area Estimation, John Wiley & Sons, Hoboken.
Google Scholar

Rao J.N.K., You Y. (1994), Small Area Estimation by Combining Time‑Series and Cross‑Sectional Data, “Canadian Journal of Statistics”, vol. 22, pp. 511–528.
Google Scholar

R Development Core Team (2016), A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna.
Google Scholar

Rao J.N.K., Molina I. (2015), Small Area Estimation, John Wiley & Sons, Hoboken.
Google Scholar

Rueda C., Mendez J.A., Gomez F. (2010), Small Area Estimators on Restricted Mixed Models, “Sociedad de Estadística e Investigación Operativa”, vol. 16, pp. 558–579, http://dx.doi.org/10.1007/s11749-010-0186-2.
Google Scholar

Slud E.V., Maiti T. (2006), Mean‑Squared Error Estimation in Transformed Fay‑Herriot Models, “Journal of the Royal Statistical Society. Series B (Statistical Methodology)”, vol. 68, pp. 239–257.
Google Scholar

Suchecki B. (2010), Ekonometria przestrzenna. Metody i modele analizy danych przestrzennych, C.H. Beck, Warszawa.
Google Scholar

Wang J., Fuller W.A. (2003), The Mean Squared Error of Small Area Predictors Constructed with Estimated Area Variances, “Journal of the American Statistical Association”, vol. 98, pp. 716–723.
Google Scholar

Wolter K.M. (1985), Introduction to variance estimation, Springer‑Verlag, New York.
Google Scholar

Żądło T. (2009), On prediction of the domain total under some special case of type A general Linear Mixed Models, “Folia Oeconomica”, vol. 228, pp. 105–112.
Google Scholar

Downloads

Published

2018-01-19

How to Cite

Krzciuk, M. K. (2018). On the Simulation Study of Jackknife and Bootstrap MSE Estimators of a Domain Mean Predictor for Fay‑Herriot Model. Acta Universitatis Lodziensis. Folia Oeconomica, 5(331), 169–183. https://doi.org/10.18778/0208-6018.331.11

Issue

Section

Articles

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 > >> 

You may also start an advanced similarity search for this article.