Survival Modelling of Repeated Events Using the Example of Changes in the Place of Employment

Authors

DOI:

https://doi.org/10.18778/0208-6018.342.10

Keywords:

employment, repeated events, exponential model, Weibull model, models with random effects

Abstract

This paper concerns the issue of survival modelling in the case of repeated events. In the modelling of this type of events, attention should be paid to the existence of dependence among the analysed durations, as well as the occurrence of unobserved heterogeneity. One of the ways to include these aspects in the analysis is to use models with random effects. The primary objective of this paper is to present the application of such models to analyse changes in the place of employment. The duration of individual periods of employment for the surveyed employees was modelled. The approach used made it possible to identify factors influencing decisions on job changes, but also to assess the risk of occurrence of events such as termination of employment, and to examine the impact of unobserved heterogeneity on the results of the estimations.

Downloads

Download data is not yet available.

Author Biography

Wioletta Grzenda, SGH Warsaw School of Economics, Collegium of Economic Analysis, Institute of Statistics and Demography

Wioletta Grzenda, PhD, Assistant Professor at SGH Warsaw School of Economics. Her scientific interests focus on modeling of socio-economic and demographic processes. She is an author of papers on the applications of Bayesian and classical statistical methods in the analysis of fertility and labor market.

References

Allison P. D. (2010), Survival Analysis Using SAS: A Practical Guide, Second Edition, SAS Institute Inc., Cary.
Google Scholar

Balbo N., Billari F. C., Mills M. (2013), Fertility in Advanced Societies: A Review of Research, “European Journal of Population”, vol. 29, pp. 1–38.
Google Scholar

Bieszk‑Stolorz B. (2018), Analysis of the duration in unemployment with use of the regression models for the recurrent events, “Research Papers Of Wrocław University Of Economics”, vol. 507, pp. 21–29.
Google Scholar

Cox D. R., Oakes D. (1984), Analysis of Survival Data, Chapman and Hall, London.
Google Scholar

CSO (2016), Monitoring rynku pracy. Kwartalna informacja o rynku pracy, Warszawa.
Google Scholar

Fan J., Li R. (2002), Variable selection for Cox’s proportional hazards model and frailty model, “Annals of Statistics”, vol. 30, pp. 74–99.
Google Scholar

Generations and Gender Programme, http://www.ggp‑i.org/ [accessed: 10.12.2018].
Google Scholar

Giannelli G. C., Jaenichen U., Rothe T. (2016), The evolution of job stability and wages after the implementation of the Hartz reforms, “Journal for Labour Market Research”, vol. 49, no. 3, pp. 269–294.
Google Scholar

Grzenda W. (2017), Modelling the duration of the first job using Bayesian accelerated failure time models, “Acta Universitatis Lodziensis. Folia Oeconomica”, vol. 4, no. 330, pp. 19–38.
Google Scholar

Gutierrez R. G. (2002), Parametric frailty and shared frailty survival models, “Stata Journal”, vol. 2, no. 1, pp. 22–44.
Google Scholar

Hougaard P. (1991), Modelling heterogeneity in survival data, “Journal of Applied Probability”, vol. 28, no. 3, pp. 695–701.
Google Scholar

Hougaard P. (1995), Frailty models for survival data, “Lifetime Data Analysis”, vol. 1, no. 3, pp. 255–273.
Google Scholar

Kleinbaum D. G., Klein M. (2006), Survival Analysis: A Self‑Learning Text, Springer Science & Business Media, New York.
Google Scholar

Kotowska I. E., Sztanderska U., Wóycicka I. (eds.) (2007), Aktywność zawodowa i edukacyjna a obowiązki rodzinne w Polsce w świetle badań empirycznych, Wydawnictwo Naukowe Scholar, Warszawa.
Google Scholar

Landmesser J. (2013), Wykorzystanie metod analizy czasu trwania do badania aktywności ekonomicznej ludności w Polsce, Wydawnictwo SGGW, Warszawa.
Google Scholar

Miller Jr R. G. (2011), Survival analysis, vol. 66, John Wiley & Sons, Hoboken.
Google Scholar

Morris C., Christiansen C. (1995), Fitting Weibull duration models with random effects, “Lifetime Data Analysis”, vol. 1, no. 4, pp. 347–359.
Google Scholar

Sochacka K. (2012), Skuteczne rozwiązanie stosunku pracy z pracownikiem, C. H. Beck, Warszawa.
Google Scholar

Sztanderska U. (2005), Aktywność zawodowa kobiet w Polsce. Jakie szanse? Jakie rezultaty?, [in:] I. Wóycicka (ed.), Szanse na wzrost dzietności – jaka polityka rodzinna?, Polskie Forum Strategii Lizbońskiej, Niebieskie Księgi, Gdańsk.
Google Scholar

Tanova C., Holtom B. C. (2008), Using job embeddedness factors to explain voluntary turnover in four European countries, “The International Journal of Human Resource Management”, vol. 19, no. 9, pp. 1553–1568.
Google Scholar

Wienke A. (2011), Frailty Models in Survival Analysis, CRC Press, Boca Raton.
Google Scholar

Willekens F. (1999), The Life course: Models and analysis, [in:] L. Van Wissen, P. Dykstra (eds.), Population Issues: An Interdisciplinary Approach, Kluwer/Plenum Publisher, New York.
Google Scholar

Downloads

Published

2019-08-22

How to Cite

Grzenda, W. (2019). Survival Modelling of Repeated Events Using the Example of Changes in the Place of Employment. Acta Universitatis Lodziensis. Folia Oeconomica, 3(342), 183–197. https://doi.org/10.18778/0208-6018.342.10

Issue

Section

Articles