Spatio‑temporal Modelling of the Influence of the Number of Business Entities in Selected Urban Centres on Unemployment in the Kujawsko‑Pomorskie Voivodeship

Authors

  • Elżbieta Szulc Nicolaus Copernicus University in Toruń, Faculty of Economic Sciences and Management, Department of Econometrics and Statistics
  • Mateusz Jankiewicz Nicolaus Copernicus University in Toruń, Faculty of Economic Sciences and Management, Department of Econometrics and Statistics

DOI:

https://doi.org/10.18778/0208-6018.337.02

Keywords:

business entities, unemployment, labour market, spatial and spatio‑temporal trends, spatial autocorrelation, spatial and spatio‑temporal autoregressive models

Abstract

The paper presents the analysis of the spatial and spatio‑temporal tendencies and dependence in matters related to the situation in the labour market of the Kujawsko‑Pomorskie Voivodeship across municipalities in the period of 2004–2015. The aim of the investigation is to verify whether, in the presence of the dependence, investing (through a growing number of enterprises) in the development of selected urban centres with a high level of unemployment can significantly reduce the unemployment rate in the whole province. The assessment of the situation in the labour market for each of the municipalities is made with the use of two characteristics, i.e. the share of registered unemployed persons in the number of the working age population and the number of business entities per 10,000 working age population. From the methodological point of view, the values of the variables are treated as realisations of spatial and spatio‑temporal stochastic processes. The spatial and spatio‑temporal tendencies and dependence were investigated using the concept of spatial and spatio‑temporal trends and spatial autocorrelation. Additionally, spatial autoregressive models for individual processes and spatial models of the dependence of unemployment on the number of business entities, for each year of the investigated period, were estimated and verified. The specification of spatio‑temporal models of unemployment, including the model which takes into consideration spatial shifts and time lags of the dependence, was carried out. The models were used for simulating the level of unemployment in the province assuming some growth in the number of business entities in selected urban centres.

Downloads

Download data is not yet available.

References

Anselin L. (1988), Spatial Econometrics. Methods and Models, Kluwer Academic, Boston.
Google Scholar

Anselin L., Florax R. J.G.M., Rey S. (2004), Advances in Spatial Econometrics. Methodology, Tools and Applications, Springer‑Verlag, New York.
Google Scholar

Arbia G. (2006), Spatial Econometrics. Statistical Foundations and Applications to Regional Convergence, Springer‑Verlag, Berlin–Heidelberg.
Google Scholar

Bal‑Domańska B. (2014), Identifying Regional Diversification and Spatial Dependence of Employment in EU Regions as One of Social Cohesion Indicators, “Acta Universitatis Lodziensis. Folia Oeconomica”, vol. 5(307), pp. 7–26.
Google Scholar

Blinova T., Markow V., Rusanovskiy V. (2016), Empirical Study of Spatial Differentiation of Youth Unemployment in Russia, “Acta Oeconomica”, vol. 66(3), pp. 507–526.
Google Scholar

Cliff A. D., Ord J. K. (1973), Spatial Autocorrelation, Pion, London.
Google Scholar

Cliff A. D., Ord J. K. (1981), Spatial Processes. Models and Applications, Pion, London.
Google Scholar

Cressie N. A.C. (1993), Statistics for Spatial Data, John Wiley & Sons Inc., New York.
Google Scholar

Gawrycka M., Szymczak A. (2010), Przestrzenne zróżnicowanie rynków pracy z punktu widzenia popytu na pracę, “Współczesna Ekonomia”, no. 1(13), pp. 47–58.
Google Scholar

Haining R. (2005), Spatial Data Analysis. Theory and Practice, 3th ed., Cambridge University Press, Cambridge.
Google Scholar

LeSage J., Pace K. R. (2009), Introduction to Spatial Econometrics, Champion & Hall/CRC, Boca Raton–London‑New York.
Google Scholar

Moran P. A.P. (1950), The Interpretation of Statistical Maps, “Journal of the Royal Statistical Society”, Series B, 10, pp. 243–251.
Google Scholar

Nosek V., Netrdova P. (2014), Measuring Spatial Aspects of Variability. Comparing Spatial Autocorrelation with Regard Decomposition in Internal Unemployment Research, “Historical Social Research – Historische Socialforschung”, vol. 39(2), pp. 292–314.
Google Scholar

Perugini C., Signorelli M. (2007), Labour Market Performance Differentials and Dynamics in EU–15 Countries and Regions, “The European Journal of Comparative Economics”, vol. 4(2), pp. 209–262.
Google Scholar

Pillet F., Cañizares M. C., Ruiz A. R., Martínez H., Plaza J., Santos J. F. (2014), Applying the European Spatial Development Perspective in Low‑density Regions: a Methodology Based on Mobility and Labour Market Structure, “Urban Studies”, vol. 51(3), pp. 577–595.
Google Scholar

Schabenberger O., Gotway C. A. (2005), Statistical Methods for Spatial Data Analysis, Champion & Hall/CRC, Boca Raton–London‑New York.
Google Scholar

Semerikova E. (2015), Spatial Patterns of German Labor Market: Panel Data Analysis of Regional Unemployment, [in:] Ch. Mussida, F. Pastore (eds.), Geographical Labor Market Imbalances: Recent Explanations And Cures, Springer, Berlin–Heidelberg.
Google Scholar

Strategia rozwoju województwa kujawsko‑pomorskiego do roku 2020 – Plan modernizacji 2020+ (The 2020 Development Strategy for the Kujawsko‑Pomorskie Voivodeship and the 2020+Modernisation Plan), http://www.mojregion.eu/files/dokumenty%20rpo/konkursy_nabory/3.1_Wspieranie%20wytwarzania%20i%20dystrybucji%20energii%20pochodzacej%20ze%20zrodel%20odnawialnych_nr_102_30_05_2017/Strategia_rozwoju_wojewodztwa_kujawsko‑pomorskiego_do_roku_2020__plan_modernizacji_2020+.pdf [accessed: 10.01.2017].
Google Scholar

Szulc E. (2007), Ekonometryczna analiza wielowymiarowych procesów gospodarczych (Econometric Analysis of Multidimensional Economic Processes), UMK, Toruń.
Google Scholar

Szulc E. (2011), Identification of the Structures of Spatial and Spatio‑Temporal Processes and a Problem of Data Aggregation, “Dynamic Econometric Models”, vol. 11, pp. 4–20.
Google Scholar

Szulc E., Jankiewicz M. (2017), The Labour Market Situation in Medium‑Sized Urban Centres of the Kujawsko‑Pomorskie Voivodeship and the Problem of Unemployment in the Province, [in:] M. Papież, S. Śmiech (eds.), The 11th Professor Aleksander Zelias International Conference on Modelling and Forecasting of Socio‑Economic Phenomena. Conference Proceedings, http://pliki.konferencjazakopianska.pl/proceedings_2017/pdf/Szulc_Jankiewicz.pdf [accessed: 12.05.2017].
Google Scholar

Szulc E., Müller‑Frączek I., Pietrzak M. (2011), Modelowanie zależności między ekonomicznymi procesami przestrzennymi a poziom agregacji danych (Modelling of Dependence between Economic Spatial Processes and Level of Data Aggregation), “Acta Universitatis Lodziensis. Folia Oeconomica”, vol. 253, pp. 327–344.
Google Scholar

Tokarski T. (2005), Regionalne zróżnicowanie rynku pracy, “Wiadomości Statystyczne”, no. 11, pp. 67–88.
Google Scholar

Vega S. H., Elhorst J. P. (2014). Modelling Regional Labour Market Dynamics in Space and Time, “Papers in Regional Science”, vol. 93(4), pp. 819–841.
Google Scholar

Downloads

Published

2018-09-20

How to Cite

Szulc, E., & Jankiewicz, M. (2018). Spatio‑temporal Modelling of the Influence of the Number of Business Entities in Selected Urban Centres on Unemployment in the Kujawsko‑Pomorskie Voivodeship. Acta Universitatis Lodziensis. Folia Oeconomica, 4(337), 21–37. https://doi.org/10.18778/0208-6018.337.02

Issue

Section

Articles

Similar Articles

<< < 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 > >> 

You may also start an advanced similarity search for this article.