Selected Robust Logistic Regression Specification for Classification of Multi‑dimensional Functional Data in Presence of Outlier

Authors

  • Mirosław Krzyśko The President Stanisław Wojciechowski State University of Applied Sciences in Kalisz, Interfaculty Institute of Mathematics and Statistics
  • Łukasz Smaga Adam Mickiewicz University in Poznań, Faculty of Mathematics and Computer Science

DOI:

https://doi.org/10.18778/0208-6018.334.04

Keywords:

basis functions representation, classification problem, functional regression analysis, logistic regression model, multi‑dimensional functional data, robust estimation

Abstract

In this paper, the binary classification problem of multi‑dimensional functional data is considered. To solve this problem a regression technique based on functional logistic regression model is used. This model is re‑expressed as a particular logistic regression model by using the basis expansions of functional coefficients and explanatory variables. Based on re‑expressed model, a classification rule is proposed. To handle with outlying observations, robust methods of estimation of unknown parameters are also considered. Numerical experiments suggest that the proposed methods may behave satisfactory in practice.

Downloads

Download data is not yet available.

References

Ahmad S., Ramli N.M., Midi H. (2010), Robust estimators in logistic regression: A Comparative simulation study, “Journal of Modern Applied Statistical Methods”, vol. 9, pp. 502–511.
Google Scholar

Bianco A.M., Yohai V.J. (1996), Robust estimation in the logistic regression model, [in:] H. Reider (ed.), Robust statistics, Data analysis and computer intensive methods, Springer Verlag, New York.
Google Scholar

Chiou J.M., Müller H.G., Wang J.L. (2004), Functional response models, “Statistica Sinica”, vol. 14, pp. 675–693.
Google Scholar

Chiou J.M., Yang Y.F., Chen Y.T. (2016), Multivariate functional linear regression and prediction, “Journal of Multivariate Analysis”, vol. 146, pp. 301–312.
Google Scholar

Collazos J.A.A., Dias R., Zambom A.Z. (2016), Consistent variable selection for functional regression models, “Journal of Multivariate Analysis”, vol. 146, pp. 63–71.
Google Scholar

Croux C., Haesbroeck G. (2003), Implementing the Bianco and Yohai estimator for logistic regression, “Computational Statistics & Data Analysis”, vol. 44, pp. 273–295.
Google Scholar

Febrero‑Bande M., Galeano P., González‑Manteiga W. (2007), A functional analysis of NO_x levels: location and scale estimation and outlier detection, “Computational Statistics”, vol. 22, pp. 411–427.
Google Scholar

Febrero‑Bande M., Galeano P., González‑Manteiga W. (2008), Outlier detection in functional data by depth measures, with application to identify abnormal NO_x levels, “Environmetrics”, vol. 19, pp. 331–345.
Google Scholar

Febrero‑Bande M., Oviedo de la Fuente M. (2012), Statistical computing in functional data analysis: The R package fda.usc, “Journal of Statistical Software”, vol. 51, pp. 1–28.
Google Scholar

Ferraty F., Vieu P. (2006), Nonparametric Functional Data Analysis: Theory and Practice, Springer, New York.
Google Scholar

Giacofci M., Lambert‑Lacroix S., Marot G., Picard F. (2013), Wavelet‑based clustering for mixed‑effects functional models in high dimension, “Biometrics”, vol. 69, pp. 31–40.
Google Scholar

Górecki T., Krzyśko M., Wołyński W. (2015), Classification problem based on regression models for multidimensional functional data, “Statistics in Transition New Series”, no. 16, pp. 97–110.
Google Scholar

Górecki T., Łaźniewska E. (2013), Funkcjonalna analiza składowych głównych PKB, “Wiadomości Statystyczne”, no. 4, pp. 23–34.
Google Scholar

Górecki T., Smaga Ł. (2015), A comparison of tests for the one‑way ANOVA problem for functional data, “Computational Statistics”, vol. 30, pp. 987–1010.
Google Scholar

Górecki T., Smaga Ł. (2017), Multivariate analysis of variance for functional data, “Journal of Applied Statistics”, vol. 44, pp. 2172–2189.
Google Scholar

Horváth L., Kokoszka P. (2012), Inference for Functional Data with Applications, Springer, New York.
Google Scholar

Hubert M., Rousseeuw P.J., Segaert P. (2015), Multivariate functional outlier detection, “Statistical Methods & Applications”, vol. 24, pp. 177–202.
Google Scholar

James G.H., Hastie T.J. (2001), Functional linear discriminant analysis for irregularly sampled curves, “Journal of the Royal Statistical Society: Series B (Statistical Methodology)”, vol. 63, pp. 533–550.
Google Scholar

Jaworski S., Pietrzykowski R. (2014), Spatial comparison of the level and rate of change of farm income in the years 2004–2012, “Acta Universitatis Lodziensis, Folia Oeconomica”, no. 307, pp. 29–44.
Google Scholar

Kayano M., Konishi S. (2009), Functional principal component analysis via regularized Gaussian basis expansions and its application to unbalanced data, “Journal of Statistical Planning and Inference”, vol. 139, pp. 2388–2398.
Google Scholar

Krzyśko M., Waszak Ł. (2013), Canonical correlation analysis for functional data, “Biometrical Letters”, no. 50, pp. 95–105.
Google Scholar

Krzyśko M., Wołyński W. (2009), New variants of pairwise classification, “European Journal of Operational Research”, vol. 199, pp. 512–519.
Google Scholar

Krzyśko M., Wołyński W., Górecki T., Skorzybut M. (2008), Learning Systems, WNT, Warsaw.
Google Scholar

Künsch H.R., Stefanski L.A., Carroll R.J. (1989), Conditionally unbiased bounded influence estimation in general regression models, with applications to generalized linear models, “Journal of American Statistical Association”, vol. 84, pp. 460–466.
Google Scholar

Maechler M., Rousseeuw P., Croux C., Todorov V., Ruckstuhl A., Salibian‑Barrera A., Verbeke T., Koller M., Conceicao E.L.T., di Palma M.A. (2016), robustbase: Basic Robust Statistics, R package version 0.92–7, http://CRAN.R‑project.org/package=robustbase [accessed: 5.04.2017].
Google Scholar

Mallows C.L. (1975), On some topics in robustness, Bell Telephone Laboratories, Murray Hill.
Google Scholar

Matsui H., Konishi K. (2011), Variable selection for functional regression models via the L1 regularization, “Computational Statistics & Data Analysis”, vol. 55, pp. 3304–3310.
Google Scholar

Olszewski R.T. (2001), Generalized feature extraction for structural pattern recognition in time‑series data. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, http://www.cs.cmu.edu/~bobski [accessed: 10.04.2017].
Google Scholar

Ramsay J.O., Hooker G., Graves G. (2009), Functional Data Analysis with R and MATLAB, Springer, Berlin.
Google Scholar

Ramsay J.O., Silverman B.W. (2002), Applied Functional Data Analysis. Methods and Case Studies, Springer, New York.
Google Scholar

Ramsay J.O., Silverman B.W. (2005), Functional Data Analysis, 2nd Edition, Springer, New York.
Google Scholar

Ramsay J.O., Wickham H., Graves S., Hooker G. (2014), fda – Functional Data Analysis, R package version 2.4.3, http://CRAN.R‑project.org/package=fda [accessed: 28.01.2017].
Google Scholar

R Core Team (2017), R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, https://www.R‑project.org/ [accessed: 10.01.2017].
Google Scholar

Rodriguez J.J., Alonso C.J., Maestro J.A. (2005), Support vector machines of interval based features for time series classification, “Knowledge‑Based Systems”, vol. 18, pp. 171–178.
Google Scholar

Rousseeuw P.J. (1985), Multivariate estimation with high breakdown point, [in:] W. Grossmann, G. Pflug, I. Vincze, W. Wertz (eds.), Mathematical Statistics and Applications, vol. B, Reidel, Dordrecht.
Google Scholar

Wang J., Zamar R., Marazzi A., Yohai V., Salibian‑Barrera M., Maronna R., Zivot E., Rocke D., Martin D., Maechler M., Konis K. (2014), robust: Robust Library, R package version 0.4–16, https://CRAN.R‑project.org/package=robust [accessed: 6.04.2017].
Google Scholar

Zhang J.T. (2013), Analysis of Variance for Functional Data, Chapman & Hall, London.
Google Scholar

Downloads

Published

2018-02-28

How to Cite

Krzyśko, M., & Smaga, Łukasz. (2018). Selected Robust Logistic Regression Specification for Classification of Multi‑dimensional Functional Data in Presence of Outlier. Acta Universitatis Lodziensis. Folia Oeconomica, 2(334), [53]-66. https://doi.org/10.18778/0208-6018.334.04

Issue

Section

Articles

Similar Articles

<< < 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 > >> 

You may also start an advanced similarity search for this article.