Selected GARCH‑type Models in the Metals Market – Backtesting of Value‑at‑Risk

Authors

  • Dominik Krężołek University of Economics in Katowice, Faculty of Informatics and Communication, Department of Demography and Economic Statistics

DOI:

https://doi.org/10.18778/0208-6018.331.12

Keywords:

volatility, GARCH‑type models, risk, Value‑at‑Risk, metals market

Abstract

 

Risk analysis in the financial market requires the correct evaluation of volatility in terms of both prices and asset returns. Disturbances in quality of information, the economic and political situation and investment speculations cause incredible difficulties in accurate forecasting. From the investor’s point of view, the key issue is to minimise the risk of huge losses. This article presents the results of using some selected GARCH‑type models, ARMA‑GARCH and ARMA‑APARCH, in evaluating volatility of asset returns in the metals market. To assess the level of risk, the Value‑at‑Risk measure is used. The comparison between real and estimated losses (in terms of VaR) is made using the backtesting procedure.

 

Downloads

Download data is not yet available.

References

Batten J.A., Cinter C., Lucey B.M. (2010), The macroeconomic determinants of volatility in precious metals markets, “Resources Policy”, no. 35, pp. 65–71.
Google Scholar

Bollerslev T. (1986), Generalised autoregressive conditional heteroskedasticity, “Journal of Econometrics”, no. 31, pp. 307–327.
Google Scholar

Charles A., Darné O., Kim J.H. (2015), Will precious metals shine? A market efficiency perspective, “International Review of Financial Analysis”, no. 41, pp. 284–291.
Google Scholar

Ding Z., Granger C.W.J., Engle R.F. (1993), A long memory property of stock market returns and a new model, “Journal of Empirical Finance”, no. 1, pp. 83–106.
Google Scholar

Engle R.F. (1982), Autoregressive Conditional Heteroscedasticity with Estimates of Variance of United Kingdom Inflation, “Econometrica”, vol. 50, no. 4, pp. 987–1007.
Google Scholar

Ganczarek A. (2007), Analiza niezależności przekroczeń VaR na wybranym segmencie rynku energii, “Dynamiczne Modele Ekonometryczne”, Wydawnictwo UMK w Toruniu, Toruń.
Google Scholar

Karanasos M., Kim J. (2006), A re‑examination of the asymmetric power ARCH model, “Journal of Empirical Finance”, no. 13, pp. 113–128.
Google Scholar

Kupiec P. (1995), Techniques for Verifying the Accuracy of Risk Management Models, “Journal of Derivatives”, no. 3, pp. 73–84.
Google Scholar

Parasuraman N.R., Ramudu P.J. (2011), Historical and implied volatility: an investigation into NSE NIFTY futures and options, “Australian Journal of Business and Management Research”, no. 7, vol. 1, pp. 112–120.
Google Scholar

Piontek K. (2005), Modelowanie własności szeregów stóp zwrotu – skośność rozkładów, “Ekonometria”, no. 15, pp. 297–308.
Google Scholar

Piontek K. (2002), Pomiar ryzyka metodą VaR a modele AR‑GARCH ze składnikiem losowym o warunkowym rozkładzie z “grubymi ogonami”, “Materiały Konferencyjne Uniwersytetu Szczecińskiego, Część II ”, pp. 467–484.
Google Scholar

Downloads

Published

2018-01-19

How to Cite

Krężołek, D. (2018). Selected GARCH‑type Models in the Metals Market – Backtesting of Value‑at‑Risk. Acta Universitatis Lodziensis. Folia Oeconomica, 5(331), 185–203. https://doi.org/10.18778/0208-6018.331.12

Issue

Section

Articles

Similar Articles

<< < 16 17 18 19 20 21 22 23 24 25 26 27 28 

You may also start an advanced similarity search for this article.