Development of the Usage of E‑services in Households, by Voivodship: a Cluster Analysis
DOI:
https://doi.org/10.18778/0208-6018.342.04Keywords:
e-services, households, voivodships, linear ordering, clustering methodAbstract
The aim of this work is to assess the development of voivodships in terms of the usage of e‑services (e‑government, e‑commerce, e‑health, etc.) in households, in comparison with the research on the overall ICT usage in households, in voivodships. The results of both of these studies enabled the verification of the thesis that the higher the level of overall ICT usage in households, in a given voivodship, the higher the level of e‑services usage in these households. In the theoretical part of the work, the rationale for the research was presented. Therefore, the importance of the usage of e‑services in households, for building an information society and consequently knowledge‑based economy, has been described. The research methodology also included: linear ordering methods (Hellwig’s method, methods that are non‑based on the pattern of development), agglomerative hierarchical clustering method (Ward’s method), and optimisation clustering method (the k‑means method) have been discussed. The empirical part of the work involves presentation of the research results. Data from the year 2017, provided by the Central Statistical Office of Poland, was used. Within the framework of the usage of e‑services in households (26 variables), the rankings of voivodships were created and the clusters of voivodships were detected. The obtained rankings and clusters of voivodships served to compare and assess voivodships in the analysed year. In the light of the results relating to the usage of the e‑services, the results of ordering and clustering of voivodships within the framework of overall ICT usage in households (27 variables) were obtained. Then, the verification of the assumed thesis was conducted.
Downloads
References
Brusco M. J., Steinley D. (2007), A comparison of heuristic procedures for minimum within‑cluster sums of squares partitioning, “Psychometrika”, vol. 72, no. 4, pp. 583–600.
Google Scholar
Cellary W. (2009), Trzy wyzwania elektronicznej gospodarki opartej na wiedzy: biznesowe, administracyjne, społeczne, [in:] J. Kotowicz‑Jawor (ed.), GOW – wyzwanie dla Polski, Polskie Towarzystwo Ekonomiczne, Warszawa, pp. 23–47.
Google Scholar
Dąbrowska A., Janoś‑Kresło M. (2010), Konsument na rynku e‑usług w krajach Europy Środkowo‑Wschodniej, Difin, Warszawa.
Google Scholar
Dąbrowska A., Janoś‑Kresło M., Wódkowski A. (2009), E‑usługi a społeczeństwo informacyjne, Difin, Warszawa.
Google Scholar
European Commission (2017), Digital Economy and Society Index (DESI) 2017, Brussels, http://europa.eu/rapid/press‑release_MEMO–17–352_en.pdf [accessed: 26.10.2018].
Google Scholar
Everitt B., Landau S., Leese M., Stahl D. (2011), Cluster analysis, John Wiley and Sons Ltd., Chichester.
Google Scholar
Flaga‑Gieruszyńska K., Gołaczyński J., Szostek D. (eds.) (2017), E‑obywatel, e‑sprawiedliwość, e‑usługi, C. H. Beck, Warszawa.
Google Scholar
Gemius (2011), E‑commerce w Polsce w oczach internautów 2010, http://pliki.gemius.pl/biuletyn_handlowy/2011_01_e_commerce_w_Polsce_internauci.pdf [accessed: 15.05.2018].
Google Scholar
Gemius, Izba Gospodarki Elektronicznej (2017), E‑commerce w Polsce 2017. Gemius dla e‑commerce Polska, https://branden.biz/wp‑content/uploads/2018/07/E‑commerce_w_Polsce_2017.pdf [accessed: 15.05.2018].
Google Scholar
Gersham A. V. (2002), How Web services will redefine the service economy, “Accenture Outlook”, pp. 41–47.
Google Scholar
Hansen P., Mladenovic N. (2001), J‑MEANS: A new local search heuristic for minimum sum of squares clustering, “Pattern Recognition”, vol. 34, no. 2, pp. 405–413.
Google Scholar
Hellwig Z. (1968), Zastosowanie metody taksonomicznej do typologicznego podziału krajów ze względu na poziom ich rozwoju i strukturę wykwalifikowanych kadr, „Przegląd Statystyczny”, vol. 15, no. 4, pp. 307–327.
Google Scholar
Hofacker C. F., Goldsmith R. E., Bridges E., Swilley E. (2007), E‑Services: a synthesis and research agenda, “Journal of Value Chain Management”, vol. 1, no. 1/2, pp. 13–44.
Google Scholar
Jeong Chun Hai I. (2007), Fundamental of development administration, Scholar Press, Selangor.
Google Scholar
Kaczmarczyk P. (2017), Taxonomic analysis of voivodships development in terms of ICT usage in enterprises, “Folia Oeconomica Stetinensia”, vol. 17, no. 2, pp. 83–96, https://doi.org/10.1515/foli–2017–0020.
Google Scholar
Kopczewska K., Kopczewski T., Wójcik P. (2016), Metody ilosciowe w R. Aplikacje ekonomiczne i finansowe, CeDeWu Sp. z o.o., Warszawa.
Google Scholar
Maulik U., Bandyopadhyay S. (2000), Genetic algorithm‑based clustering technique, “Pattern Recognition”, vol. 33, no. 9, pp. 1455–1465.
Google Scholar
McQueen J. (1967), Some methods for classification and analysis of multivariate observations, “Computer and Chemistry”, vol. 4, pp. 257–272.
Google Scholar
Ministerstwo Nauki i Informatyzacji (2005), Strategia kierunkowa rozwoju informatyzacji Polski do 2013 roku oraz perspektywiczna prognoza transformacji społeczeństwa informacyjnego do roku 2020, Warszawa, 24 czerwca.
Google Scholar
Ministerstwo Rozwoju Regionalnego (2010), Krajowa strategia rozwoju regionalnego 2010–2020: regiony, miasta, obszary wiejskie, Warszawa, http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WMP20110360423/O/M20110423.pdf [accessed: 26.10.2018].
Google Scholar
Ministerstwo Rozwoju Regionalnego (2013), Strategia rozwoju społeczno‑gospodarczego Polski Wschodniej do roku 2020, Warszawa, http://prawo.sejm.gov.pl/isap.nsf/download.xsp/WMP20130000641/O/M20130641.pdf [accessed: 26.10.2018].
Google Scholar
Młodak A. (2006), Analiza taksonomiczna w statystyce regionalnej, Difin, Warszawa.
Google Scholar
Muhammad Rais A. K., Nazariah M. K. (2003), E‑government in Malaysia: improving responsiveness and capacity to serve, Pelanduk Publications, Kuala Lumpur.
Google Scholar
Nof S. Y., Ceroni J., Jeong W., Moghaddam M. (2015), Revolutionizing collaboration through e‑work, e‑business, and e‑service, Springer, Berlin, Heidelberg.
Google Scholar
Panek T., Zwierzchowski J. (2013), Statystyczne metody wielowymiarowej analizy porównawczej. Teoria i zastosowania, Szkoła Główna Handlowa, Warszawa.
Google Scholar
Rowley J. (2006), An analysis of the e‑service literature: towards a research agenda, “Internet Research”, vol. 16, no. 3, pp. 339–359, https://doi.org/10.1108/10662240610673736.
Google Scholar
Rust R. T., Kannan P. K. (2002), The era of e‑service, [in:] R. T. Rust, P. K. Kannan (eds.), E‑service: new directions in theory and practice, M. E. Sharpe, New York, pp. 3–21.
Google Scholar
Rust R. T., Lemon K. N. (2001), E‑service and the consumer, “International Journal of Electronic Commerce”, vol. 5, no. 3, pp. 85–101.
Google Scholar
Saprikis V. (2018), Terrestrial vs. online gamblers: an empirical study on their perceptions towards, [in:] M. Khosrow‑Pour (ed.), Optimizing current practices in e‑services and mobile applications, IGI Global, Hershey, pp. 203–213.
Google Scholar
Sneth J. N., Sharma A. (2007), E‑services: a framework for growth, “Journal of Value Chain Management”, vol. 1, no. 1/2, pp. 7–12.
Google Scholar
Song R., Korba L., Yee G. (2007), Trust in e‑services: technologies, practices and challenges, Idea Group Publishing, Hershey–London.
Google Scholar
United Nations Conference on Trade and Development (2007), Information Economy Report 2007–2008: Science and technology for development: the new paradigm of ICT, New York–Geneva.
Google Scholar
Ward J. H. (1963), Hierarchical grouping to optimize an objective function, “Journal of the American Statistical Association”, vol. 58, no. 301, pp. 236–244.
Google Scholar
Woodside A. G., Quaddus M. (2015), Acquiring deep knowledge of e‑services adoption processes in developing nations, [in:] M. Quaddus, A. G. Woodside (eds.), E‑services adoption: processes by firms in developing nations, Emerald, Bingley, pp. 1–4.
Google Scholar